

Structural Characterization for H₂ storage

NREL: Steven Christensen, Katherine Hurst, Philip Parilla, Thomas Gennett

SLAC/SSRL: Dimosthenis Sokaras, Dennis Nordlund, (Tsu-Chien Wang)

Core-level spectroscopy

Core-level spectroscopy: electronic structure via excitation of core electrons

- X-ray absorption Spectroscopy (XAS)
- X-ray Emission Spectroscopy (XES)
- Photoemission Spectroscopy (PES) – XPS / UPS
- Inverse Photoemission Spectroscopy (IPES)

Applications:

- Composition: XPS, XES (XRF)
- Electronic structure (DOS)
- Physical structure
- 'Chemical environment'
- Band level alignment

Figure: Dennis Nordlund, SLAC

Feedback driven characterization model

eedback Loop

Calculated and Experimental XAS S 1s of CdS

Investigating the processing of CdS used in thin film solar cells.
In collaboration w/ David
Prendergast LBNL

Theoretical Modeling Schematic

- Develop structure
 - Crystal Structure
 - Molecular Dynamics (ab initio, empirical)
 - Monte Carlo Simulations
- Simulate XAS/XES spectra
 - DFT within XCH approximation for *K*-edges
 - DFT within BSE approximation for *L*-edges (new)
 - DFT within GS approximation for XES (new)
- Compare to experimental data

Calculated XAS – assessing the possible

- Starting with model systems we can evaluate possible experiments
- Calculated XAS predicts the possible changes to the local electronic and physical structure with and without H₂

Calculated w/ FEFF

SSRL-NREL Experimental capabilities

XRS/XAS

XAS/XES

Soft < 1.5 keV

Tender (1.5-5 keV)

Hard > 6 keV

1s: B, C, N, O 2p TMs: Ti, V, Ni,

1s: Al, Si, P, S 3p TMs: Mo, Ru, Pd

1s TMs: Fe, Co, Ni

2p: Pt, Ir

- Developed several spectrometers/opti cs for XAS, XRS, XES in multiple energy ranges
- Developed in-situ methodologies
- High throughput capabilities for exsitu

High throughput sample holder enables ~100 samples per run for soft X-ray characterization (XAS, XPS) at BL 10-1 / SSRL.

Operando X-ray spectroscopy for H₂ storage

X-ray pressure cell: 100 bar / 22 °C 30 bar / 300 °C

- What chemical and structural changes can be expected for elevated pressures and temperatures?
- What chemical and structural changes can be observed?
- Developed a pressure cell that enables:
 - Hard X-ray XAS / XES
 - Soft X-ray XAS via XRS
- Operando measurements can give a fundamental knowledge for H₂ storage mechanisms

Acknowledgement

 This work was supported by the Fuel Cell Technologies Program within the U.S.
 Department of Energy, Office of Energy
 Efficiency and Renewable Energy.