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• Cryogenic H2 Onboard Storage 
• Temperature as a Degree of Freedom in H2 storage 

• LLNL Cryocompressed Project History 

• 350 Bar Test Vehicle Park & Drive Results  

• Current Project 
• 700 bar prototype (cryogenic) vessels 

• Refueling with LH2 Pump 

• Test Vessel Cycling Facility 

• System Considerations 
• Vacuum Jacketing 

• Vacuum, Temperature, Heat Transfer 

• Material properties at low temperatures 

LLNL 350 bar cryogenic pressure vessel  

stores 10 kg LH2 onboard a 2005  Prius 

The Road Ahead 



Adsorbed H2: parasitic volume, 

exothermic refueling & cryogenics 
 Hydrides: parasitic mass, 

refuel speed/temperature 

Cryogenic Liquid H2 (28 Kelvin, 6 bar) 

evaporation when parked 3-4 days 

Compressed Gas (350-700 bar) 

H2 volume, fast fill heating 

Onboard H2 storage approaches face thermodynamic challenges 



 Maximum Density, Minimum Mass 

 Extended Thermal Endurance 

 Superior Refuel Thermodynamics 

 Thermal Isolation 

 Low Internal Energy 
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Thermodynamic limits of LH2 & ambient H2 storage can be overcome 
with H2 pressure vessels operable across broad range of temperatures 



 Maximum Density, Minimum Mass 

 Extended Thermal Endurance 

 Superior Refuel Thermodynamics 

 Thermal Isolation 

 Low Internal Energy 

Thermodynamics of high pressure cryogenic H2 refuel/storage 
can provide powerful automotive/driver characteristics 

 Minimum Size/Cost 

 Fuel Economy, Parking Time  

 Low Energy Rapid Refueling 

 High on-road Safety Factor (5-10) 

 Low Burst Energy (3-5x) 



2003-2010 

Onboard Commercial vessels 

350 bar, 10 kg LH2  

1997-2003 

Dormancy simulation 

Subscale vessel testing  

2010-2013 

Heat transfer 

350 bar  refuel w/ LH2 pump 

LLNL has pioneered cryogenic H2 gas with a comprehensive approach 
while improving storage density, dormancy, safety, cost, & refueling 
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Elevation Profile. Delta: 60 ft 

1 lap=3.6 miles 

Temperature, H2 Pressure and velocity (GPS) @ 1 Hz. 

8 bar 100 kg LH2 Dewar 
(3 bar 10 kg refueling) 

Stop sign 

Stop sign 

H2 Prius  parked at 
Energy Storage & 
Conversion group 

875 bar LH2 pump 
800 kg Dewar 

LLNL 3.6 mile outer loop: 
25 mph maximum speed 

Key aspects of cryogenic H2 onboard storage were explored 
 during 200 lap LH2 refuel/park/drive experiment of 350 bar H2 Prius 

T~100 K 



4 month refuel/park/drive demonstrated: 
(A) 2 week dormancy @ 90% full (B) return to 20 K (400 miles) 

(C) under 350 bar envelope for 7 mi/day (full) 
2 wks park 

90% full 

Vented 8 kg (i.e. 400 mi) 

250 mi/1 wk 

(90 g/L) 

(76 g/L) 

(50 g/L) 

130 mi/18 days 

Thanksgiving  
(Nov 21 – 25) 

107 mi/15 days 50 mi/15 days 

Christmas  (Airport) 
(Dec 22 - Jan 9) 

150 mile drive 

3 mi/wk 

Ambient (300 K) driving range 

Outside temperature 

Weeks 
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(25 g/L) 

(38 g/L) 

(63 g/L) 

3 bar LH2 
refuelings 



• High density (cold) H2 allows minimum vessel volume, mass, & cost with rapid refueling 
• Large capacities improve cryogenic valve/vacuum jacket cost, mass,  & volume per kg of H2 
• Inert secondary containment, min burst energy @ max tension, on road safety factor of 5-10  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Small vacuum space necessary for system density 
• Temperature variations alter system/material behavior, density, dormancy, H2 burst energy 
• Competing design objectives: acceleration (strong suspension) vs. parking (thermal isolation) 

700 bar cryogenic H2 refueling offers volume, capacity, & safety 
advantages balanced by increasing technical demands 

We will demonstrate 5 kg H2 storage at 700 bar (50 g/L, 9+ wt%)  

100 kgH2/min 
875 bar LH2 pump 

7 minute 10 kgH2 fill to 70 g/L (350 bar, 65 K)  

800 kg Dewar 



Ultra Thin liner (1.3-1.5 mm): necessary for small diameters 
Non-Al liner: liner, piping, and weld durability under cryogenic H2 cycling 
Maximum fiber fraction: minimum wall volume & thermal inertia 

Our objective is to explore thermomechanical limits of 12 inch vessels 
designed specifically for cryogenic H2 storage 

We are demonstrating 700 bar prototype cryogenic vessels 
 designed for 80+% volumetric efficiency 

163 L 

81% volumetric efficiency 
1.8 mm non-Al liner 

700 bar (1st) Prototype  
65 L, 32 kg 

700 bar Commercial 
163 L, 114 kg 
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70% volumetric efficiency 
9 mm Al liner 

36” long 

39” long 



1st go/no-go (LN2) test demonstrated vessel cryogenic strength 
Cryogenic durability (1,500 LH2 refuels) to be shown in 2nd test 

FY15 Go/No-Go milestone  
 

Demonstrated cryogenic 2.23 safety factor (1560 bar) 
32 kg vessel,1.8 mm liner with 81% volumetric efficiency  

4 rapid pressurizations of 50 kg LN2 with warm N2 gas  

FY16 Go/No-Go milestone  
 

Demonstrate EOL cryogenic safety factor > 1.85 
after 1,500 LH2 fuelings   

 
1,300 bar test from 875 bar H2 at 90-120 K  
Slow (~3 hr) temperature rise to 140-180 K 

2 fills to 700 bar  
1 fill to 875 bar  
~3 hours warm-up to 1300 bar 

1300 bar 

2/25/2015 

90 to 120 K @ 875 bar 
(70 to 80 g/L) 



40 kWe Heat Exchanger 
20 to 273 K @ 60 kg/hr 

65 bar ASME Containment 
65 Liters H2 at 360 K, 875 bar 

125 Liters H2 at 160 K, 700 bar 

875 bar LH2 pump 
130 kWe 

(100 kgH2/hr) 

800 kg LH2 Dewar 
(650 kg actual) 

Flow meter installed  
250 kgH2/day 

+/- 0.2% 

100 kg H2/hr, 800 kg LH2 facility 
for cycling (120-200 fills/day) of full-scale prototype vessels  

Vent stack 
(6 kgH2/min) 



Ideal cryogenic H2 cycling covers full pressure & temperature range, 
emphasizing maximum thermomechanical stress and time at pressure 

Internal Energy, kJ/kg 
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Peak liner  
compression 
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Peak liner 
strain (full) 

Coldest liner 
compression 
(~1 kg LH2) 

6 hour 
warmup 
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   Weight (kg)   wt%H2 Volume (L) kgH2/m3 
4,000 psi vessel+boss     60.9          14.9                        179  59.7 
Steel vacuum jacket     57.1             8.3           225  47.4 
Ancillary components                  16            7.4               11  45.2 

10.7 kg LH2 

(150 Liters, 1 atm)  

LLNL developed two vacuum jacket generations for 150 L cryogenic H2 

the smallest 3mm steel jacket was 225 L, 60 kg with <1” vacuum gap 



Preliminary long term vacuum pressure data did not 

indicate increased heat transfer below ~250 K 



Multiple month experiments indicated 

 vacuum pressure followed vessel temperature 



Low temperature material properties  
offer opportunity and challenge for cryogenic pressure vessels 

Focus on gradients at moderate temperatures & dissimilar materials  
Extreme cold can maximize thermomechanical properties 

Opportunities greatest at coldest temperatures (typically <100 Kelvin) 
• Increased composite fatigue life 
• Increased composite stiffness 
• Increased metal strength, cycle life 
• Declining thermal conductivity 
• Asymptotic heat capacity 
• Asymptotic thermal contraction coefficient 
 
Challenges due to temperature change and variation 
• Aluminum minimizes gradients but high CTE 
• Stainless steel sustains gradients but medium CTE 
• Composites sustain highest gradients with small CTE 

 
• Majority of thermal contraction typically occurs between 300 K and 200 K  
• 10% of thermal contraction at T < 100 Kelvin 


