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Campaign Objectives

M Develop advanced fuel cycle material recovery and waste
management technologies that improve current fuel cycle
performance and enable a sustainable fuel cycle, with minimal
processing, waste generation, and potential for material diversion
to provide options for future fuel cycle policy decisions

B Campaign strategy is based on developing:
e Technologies for economical deployment

— Concept through engineering-scale
demonstration

e Capabilities for long-term
science-based, engineering driven
R&D, technology development and
demonstration

e People to provide the next generation of
researchers, instructors, regulators and
operators

Open/Closed
Fuel Cycles

& Environmental

National
= Security
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Campaign Mgt
& Integration

Reference Tech
& Alternatives

Minor Actinide
Sigma Team

Off-Gas
Sigma Team

Advanced WF
& Processes

Waste Form
Characterization

Fund Science
& Mod/Sim

Domestic Echem
Process

Fuel Resources

MRWFD Campaign Structure
Aimed to Improve Once-Through
and Enable Recycle

* Provide technical leadership in separations and waste forms, leading to effective options for future fuel cycles
» Manage Campaign research and development to include: prioritization, planning, reporting, and technical reviews
« Collaborate with university researchers, other campaigns, program offices, and international organizations

* Provide a framework and data to evaluate technology improvements, performance targets, and identify gaps
« Develop and demonstrate material recovery technologies that enable processing a broad range of fuels with
stringent separation requirements (focused on aqueous processing of LWR oxide fuel)

« Develop and demonstrate technologies that enable TRU separations from LWR fuel
« Develop cost effective separations processes for MA recycle

« Develop and demonstrate technologies that enable fuel treatment under current regulatory environment
» Develop cost effective solutions to off-gas management from fuel treatment and other nuclear applications

« Develop next generation, high performance, waste forms consistent with advanced separations technologies
» Demonstrate waste processes cost effective, reliable fabrication of next generation waste forms

« Enhance disposal options for existing and high-performance waste forms
« Develop fundamental understanding of waste form behavior in a variety of disposal environments
 Work with international partners to develop consensus degradation rate law(s)

« Develop advanced methods and fundamental understanding of separation chemistry and processes
* Develop predictive models based on fundamental data

« Develop and demonstrate deployable and sustainable technology to enable recycle of U/TRU for metal fast
reactor fuel

* Develop and demonstrate extractants and engineered systems to further improve performance and lower cost
supply of uranium from seawater
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Nuclear Energy

B Advanced fuel cycles, if deployed, will likely be implemented in
2-3 decades

M There is a need for monitoring process operation in near real
time
e Currently, only tank volumes, temperatures, pressures, etc. are
monitored, chemical analysis of the process is obtained, via sampling,
which has a lag time of several hours from the time the sample is taken
until the operators know the results of the analysis
B Chemical performance data (i.e. concentrations of key chemical
species at any given time) would greatly improve operations and
reduce the need for taking and analyzing samples

M Separation process operation would benefit from the near-real-
time analysis of a number of chemical species
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On-line Monitoring

B The MRWFD campaign has been developing methods to monitor
key chemical components of a separation process, in near real
time

M Agueous processing

e Sam Bryan, PNNL
M Electrochemical pyroprocessing
e Mark Williamson, ANL
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Nuclear Energy

B Raman measurements of
e Actinide oxide ions
e Organics: solvent components and complexants
e Inorganic oxo-anions (NO;-, CO,%, OH-, SO,%, etc)
e Water, acid (H*), base (OH), pH in weak acid/weak base
B UV-vis-NIR measurements of
e trivalent and tetravalent actinide and lanthanide ions
M Potential Uses
e Process monitoring for safeguards verification (IAEA)
e Process control (operator)
® Previous Experience: Hanford Site including deployments

e Real-time, online monitoring of high-level nuclear waste in tanks and to
the waste pretreatment process
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dissolved fuel

| Global vision:
_ ! L
CODECON —— U, Pu. Np Proce_ss mon_ltormg/control
Tc at various points in
l flowsheet

Monitoring of
strong acid TRUEX FPs

or pH desired l

Every flowsheet contains
Raman and/or UV-vis-NIR
TALSPEAK | ——  Am/Cm active species

!

rare earths

Monitoring Is Not Flowsheet Specific
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final output
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Static measurements: /Chemometric model \ On-line model verificatio;\
Model training database development and translation

Pu chemometric model
PLS model for Pu(IV) using UV-vis data

y =0.9997x + 0.0006
R?=0.9999

——>

Absorbance
[Pu(lV)], mM, model

g
!
il
i
&/
g/
A
s i
Sy
o
950 0 2 4 6 8
\ Pu(Iv), mM

{eal-time on-line concentration data display

EIE]

Integrated software for data collection,
processing, storage and archiving
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PENERGY UO,?*, Pu, and Np species in fuel
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Raman spectroscopy Vis-NIR spectroscopy
Variable UO,(NO,), in 0.8M HNO, Variable Pu(lV) in fuel feed simulant
0.7 =
n U0, UO,(NO5),, M >8]
/ N03 131
) 0.5
(7)) \ e 0.66
c ——0.49 9 e
8 0.16 § 041 Pu(lv) added, mM
n ——0033 2
o ——0.016 S o3
% ——0.0033 fé
——0.0016 02 |
% ———0.0003
m L
0.1
800 850 900 950 1000 1050 1100 1150 o 550 650 50 T
wavenumber, cm- wavelength, nm
Detection limits: Pu(lV) concentration variable 0.1 to 10 mM
e 3.1 mM for UO, Feed composition: 1.3 M UO,(NO,), in 0.8 M HNO,
* 0.08 mM for Pu(IV) UO,(NO,), does not interfere with Pu measurements
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W@WENERGY spectroscopic methods for commercial
Nuclear Energy BWR ATM-109 fuel measurements

B Commercial fuel: ATM-109, BWR, Quad Cities | reactor; 70 MWd/kg; high burnup
B Fuel dissolved in HNO,

M Performed batch contact on each aqueous feed with 30 vol% TBP-
dodecane

M Feed, Organic, Raffinate phases
successfully measured by
e Raman, Vis-NIR
B Excellent Agreement of spectroscopic
determination with ORIGEN code and
ICP measurement

ATM-109 U Pu Np Nd
burnup code (ORIGEN-ARP ) 0.720 7.50E-03 4.60E-04 1.10E-02
ICP-MS 0.721 8.99E-03 4.70E-04  0.84E-02
Spectroscopy 0.719 8.90E-03 4.70E-04  1.10E-02
Spectroscopic / ICP ratio 1.0 0.99 1.0 1.3

Molar units

Bryan et al. Radiochim. Acta, 2011.

10
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Task objectives FY15/16

Support the roadmap for on-line monitoring and help define the activities
required for a technology transfer to an operating reprocessing plant, H-
Canyon facility

B CEA-DOE collaboration

e demonstrate micro-Raman probe for use on U and HNO; measurements
e interface micro-Raman probe for measurement at the microfluidic scale

B SBIR Grant: Spectra Solutions, Inc. / PNNL

e development of combined Raman/UV-vis probe for use in reprocessing
environment

B Advances in spectroscopic method for weak acid (pH) monitoring,
supporting advanced TALSPEAK

e |nstrumented two phase extraction system for kinetic monitoring
e Spectroscopic process monitoring for real-time feedback control

11
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Measurement on micro-scale:
Schematic of Raman Microprobe
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Microprobe for DOE-CEA Collaboration

reagent
(inlet) B
A sol A solB Microfluidic
Chip
Laser Beam
CEA/LAMM
mixing
region

Raman Microscope
Video Probe

mixture
{outlet)

A) Microfluidic mixing chamber showing inlets for reagents (Solution A and B), and outlet for
mixture. B) Schematic of the Raman Microscope-video probe adjacent to the microfluidic cell

shown with the laser focus within the microchannels of the mixing chamber
12
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24.8 um Laser spot
linewidth 124 um

Focusing CCD Raman
Lens Video Camera Filter Module

USAF Test Target

15t generation probe 2"d generation

Linear
Actuator

13
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Micro-Raman probe

A - B

Flow cell

Objective lens

Macro-Raman probe

14

XYZ translation stage
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Macro-Raman Probe Micro-Raman Probe

A Uo, (0 M) B U, (8 M)
U, (0.25 1) U, (0.25 M)
UG, (050 M) UG, {050 M)
U0, (190 M) U, (1.00 M)
U, (1.25 M) U, (1.25 1)
U3, (150 M UG, (1.50 M)
UG, (2,00 1) U, (200 M)
° ° Sample in
g g lass vial
S NO.- B glass via
o 3 o
bl w
Q €
0 o
c c
£ £
£ E Raman probe
el n'd

800 200 1000 1100 800 900 1000 1100

1 1

wavenumber, em’ wavenumber, cm’”

Total
HNO . UO,(NO
Detection limit, mM ° Nitrate 2ANO)z
macro-Raman Probe 5.7 55 2.9
micro-Raman Probe 6.8 6.7 4.5 -




Model predictions for UO,(NO,).,
HNO,, and total nitrate using the
Nuclear Energy Micro-Raman Probe

PLS predictions using micro-Raman probe

U(VI) model HNO; model total NO; model
T T T T T T 12 T ‘
2 A - :| B ; C
g ¢
g 10}
. =
2 15 = 5 ‘>
+-\ a, o 8 L
e (@] z B
O 2 =
o i = 4 Q &
'3 © - ¢
> Fit g o J
L 1:1 a— Fit 3 rg Fit
] ¢ HNO3 (O M) © 1:1 o 4 )} 11
@ 05 B HNO3 (0,50 M) | @ & uozom S o & Uoz oM
o A HNO3 (1.00 M) o B ucz (.25 M) Q { B UGz (025M)
¥ HNO3 (2.00 M) A U0z (0.50 M) E A Y02 (0.50 M)
% HNO3 (3.00 M) v UO2(1.00M) 5t v U2 (1.00 M} |
| HNO3 (4.00 M) U2 (1.25M) %002 (125 M)
0r ¢ HND3 (6.00 M} | uoz (1.50 M | Uo? (150 M)
’ B HNO3 (8.00 M) | ¢ UD2(200M) & U2 (200M)
0 1 2 0 A 4 6 8 0 5 10
Measured UO,2*, M Measured HNO;, M Measured total NO;;, M

Solution composition mixtures of
UO2(NOs)2 (0 —2M) and HNOs (0 — 8M)



FX ENEﬁGOY Raman Spectra as a Function of Time
for Varying Nitric Acid Solutions in 8
Nuclear Energy pL cell

Outfloww f Inflow

il Micro-Raman probe with 8 pL cell

Cell

S-16
: S-8
9000 - NO,” 59 o 57
Raman Microscope . 3 511
Video Probe e \ 11 i
7000 - .12 S-5
%WL : 5-13 i
Soln HNO, Soln HNO, s Water region .
ID ID E__ 53
g 4000 _14 i
S-1 0 S-9 6.0 E 500 5 :
S-2 1.0 S-10 5.0 © 2000 - 3
S-3 2.0 S11 4.0
s-4 30 s-12 3.0 . —
S-5 4.0 S-13 2.0 W w 2500
S-6 5.0 S14 1.0 flow time, s : b wavenumber, cm™
S-7 6.0 S-15 0
S-8 8.0 S16 8.0
S-17 0 Flow rate: 1 mL/min

17
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R for Varying Nitric Acid Solutions in 8
Nuclear Energy pL cell

Micro-Raman probe with 8 pL cell
N7 9

S-8 S-16

8F __
| i
5-7 5-9

6 S-10

S-11

r S-12

S-13

S-14
1 - -
15 S-17
O _________________________________ ) LA A

| | | | | |
100 200 300 400 500 600
Flow time, s

HNO,; Concentration, M

Flow rate: 1 mL/min
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WENERGY time for varying UO,(NO,), and nitric

Nuclear Energy acid Solutions in 8 yL cell

Raman intensity

wavenumber, cm”

1

nitrate band
at 1050 cm!

UO,%* band at
871 cm

800" g 20 time

Nitric acid range: 0 — 3M
UO,(NO,), range: 0 - 2M
total nitrate range: 0 — 7M

19



GER U5 DEPARTMENT OF PLS model predictions of varying
UO,(NOs), and nitric acid solutions in

Nuclear Energy 8 |.IL cell

, M, predicted

3

‘

, total NO

U, HNO

[ [ [ [ [ [ [ [ [

L @ U predicted . -
® HNO , Predicted “
- . total nitrate predicted Y -
---------- analytical value ~

HNO;4 QD

HNOy-3 £ UO,-6

- : UO,-5
HNO,-2 UO,-4

HNO- 1 :
ater - UO,-1 ' water
| | | |

time, min

I
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“Industrial Scale Accounting Control and Process Monitoring
Spectroscopic System for Nuclear Material Recovery Process”

e Hardened, combined UV-vis/Raman, process monitoring system for use
in commercial reprocessing environment

M Phase 1: Funded May 2015. (May 2015 - Jan 2016)
e fabricate and demonstrate utility of combined UV-vis/Raman Probe

B Goal: to coordinate hardware development/demonstration
under SBIR with deployment under FCRD

B Related FCRD activity
e Planning for H-Canyon process monitoring demonstration

21
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SBIR Phase 1 grant: combined
UV-vis/Raman probe

Nuclear Energy

SBIR Grant: An Industrial Scale Accounting Control and Process Monitoring
Spectroscopic System for Nuclear Material Recovery Process
PNNL/ Spectra Solutions, Inc.

Solution outlet

Raman excitation/emission

UV-vis fiber-optic
excitation/emission

Solution inlet

22
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SBIR combined UV-vis/Raman probe

NaNO, M |Nd(NO,), , mM
0.00 0 L
0.50 0
HI 1.00 0
Raman Training set 00 X
3.00 0
4.00 0
<10 4.00 5.0
2 NO;-5 4.00 10.0
2 : 4.00 15.0
z NO,-4 UV-vis 4.00 20.0
§ ™ NO4-3 4.00 30.0
E 1
g 05 1A Nd'5
£
€ o '“ Nd-4 -
:N:E 9 015 -
500 =
1000 B
8
D
[1+]

40

O ED -
4oy flow time, s

120

wave length, nm 450 40

. 20 .
R flow time, s
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Concentration profile of Nitrate and
Nd3* during flow experiment

Nuclear Energy

Chemometric (PLS)

E. 4|.[——Analyzed Value NO;-5 analySiS of Raman and
——Predicted NO_, Conc. -
2 redieted ™, one UV-vis spectra
£l NOg4 Raman
@ . .
g , NO,-3 « Nitrate determined by
o Raman
I_E_ 1 NO,-2
— | NOs1 )
g U e Nd3* determined by UV-
= 0 l | | | | | | | :
0 1000 2000 3000 4000 5000 6000 7000 8000 VIS
= L0 —— Analyzed Valgf Nd-5 NaNO, M |Nd(NO.),, mM
g ~—Predicted Nd** Conc. 0.00 0
= 25| 0.50 0
g o UV-VIS 1.00 0
] 2.00 0
= 15+ 3.00 0
Q oL 4.00 0
;t_u i 4.00 5.0
=z | 4.00 10.0
0 e e : : 4.00 15.0
0 1000 2000 3000 4000 5000 6000 7000 8000 4.00 20.0
Flow Time, s 4.00 30.0
0.00 0 ,
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SBIR summary and planning

B Demonstrated utility of integrated UV-vis/Raman probe design
using non-rad NaNO,/Nd(NO;), solutions

B Phase 2: Funding FY 2016 (TBD)

e Goal to fabricate and demonstrate hardened combined UV-vis/Raman
probe and spectrometer system.

B Experiments planned under Phase 2 funding

e U, Pu, Np, variable HNO; measurements with combined probe
— Demonstration purposes
— Generate database for eventual deployment

25
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B Using simulants and BWR Spent Fuel

e Demonstrated quantitative spectroscopic measurement on actual commercial
fuel samples under fuel reprocessing conditions

— Raman for on-line monitoring of U(VI), nitrate, and HNO, concentrations, for both
aqueous and organic phases

— VIis/NIR for on-line monitoring of Np(V/V1), Pu(IV/VI1), Nd(lIl)

B Demonstrated micro-Raman probe for use on U and HNO; measurements
e Detection limits and predictive modeling of U, HNO4 and nitrate using static solutions

B Interfaced micro-Raman probe with commercial micro-flow cell
e Demonstrated monitoring of variable HNO,; and UO,(NO,), with micro-volume flow cells

B Future plans for on-line process monitoring
e Collaborative demonstration on commercial (larger) scale
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