Office Of Nuclear Energy Sensors and Instrumentation Annual Review Meeting

Materials Recovery and Waste Forms Overview

On-line Sampling & Monitoring – PNNL

Samuel A. Bryan

Pacific Northwest National Laboratory
October 28-29, 2015

Campaign Objectives

Nuclear Energy

■ Develop advanced fuel cycle material recovery and waste management technologies that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion to provide options for future fuel cycle policy decisions

Campaign strategy is based on developing:

- **Technologies** for economical deployment
 - Concept through engineering-scale demonstration
- <u>Capabilities</u> for long-term science-based, engineering driven R&D, technology development and demonstration
- <u>People</u> to provide the next generation of researchers, instructors, regulators and operators

MRWFD Campaign Structure Aimed to Improve Once-Through and Enable Recycle

Campaign Mgt & Integration

- Provide technical leadership in separations and waste forms, leading to effective options for future fuel cycles
- Manage Campaign research and development to include: prioritization, planning, reporting, and technical reviews
- Collaborate with university researchers, other campaigns, program offices, and international organizations

Reference Tech & Alternatives

- Provide a framework and data to evaluate technology improvements, performance targets, and identify gaps
- Develop and demonstrate material recovery technologies that enable processing a broad range of fuels with stringent separation requirements (focused on aqueous processing of LWR oxide fuel)

Minor Actinide Sigma Team

- Develop and demonstrate technologies that enable TRU separations from LWR fuel
- Develop cost effective separations processes for MA recycle

Off-Gas Sigma Team

- Develop and demonstrate technologies that enable fuel treatment under current regulatory environment
- Develop cost effective solutions to off-gas management from fuel treatment and other nuclear applications

Advanced WF & Processes

- Develop next generation, high performance, waste forms consistent with advanced separations technologies
- Demonstrate waste processes cost effective, reliable fabrication of next generation waste forms

Waste Form Characterization

- Enhance disposal options for existing and high-performance waste forms
- Develop fundamental understanding of waste form behavior in a variety of disposal environments
- Work with international partners to develop consensus degradation rate law(s)

Fund Science & Mod/Sim

- Develop advanced methods and fundamental understanding of separation chemistry and processes
- Develop predictive models based on fundamental data

Domestic Echem Process

 Develop and demonstrate deployable and sustainable technology to enable recycle of U/TRU for metal fast reactor fuel

Fuel Resources

 Develop and demonstrate extractants and engineered systems to further improve performance and lower cost supply of uranium from seawater

Instrumentation and Controls needs

Nuclear Energy

- Advanced fuel cycles, if deployed, will likely be implemented in 2-3 decades
- There is a need for monitoring process operation in near real time
 - Currently, only tank volumes, temperatures, pressures, etc. are monitored, chemical analysis of the process is obtained, via sampling, which has a lag time of several hours from the time the sample is taken until the operators know the results of the analysis
- Chemical performance data (i.e. concentrations of key chemical species at any given time) would greatly improve operations and reduce the need for taking and analyzing samples
- Separation process operation would benefit from the near-realtime analysis of a number of chemical species

On-line Monitoring

Nuclear Energy

- The MRWFD campaign has been developing methods to monitor key chemical components of a separation process, in near real time
- Aqueous processing
 - Sam Bryan, PNNL
- Electrochemical pyroprocessing
 - Mark Williamson, ANL

Approach: On-line Spectroscopic Measurements

■ Raman measurements of

- Actinide oxide ions
- Organics: solvent components and complexants
- Inorganic oxo-anions (NO₃⁻, CO₃²⁻, OH⁻, SO₄²⁻, etc)
- Water, acid (H⁺), base (OH⁻), pH in weak acid/weak base

■ UV-vis-NIR measurements of

trivalent and tetravalent actinide and lanthanide ions

■ Potential Uses

- Process monitoring for safeguards verification (IAEA)
- Process control (operator)

■ Previous Experience: Hanford Site including deployments

 Real-time, online monitoring of high-level nuclear waste in tanks and to the waste pretreatment process

Process Monitoring Can Be Achieved Throughout the Flowsheet

Nuclear Energy

Global vision:

Process monitoring/control at various points in flowsheet

Every flowsheet contains Raman and/or UV-vis-NIR active species

Monitoring Is Not Flowsheet Specific

Methodology for on-line process monitor development: from proof-of-concept to final output

Raman response

Nuclear Energy

Optical spectroscopy for monitoring UO₂²⁺, Pu, and Np species in fuel solutions

Raman spectroscopy

Variable $UO_2(NO_3)_2$ in 0.8M HNO_3

Vis-NIR spectroscopy

Variable Pu(IV) in fuel feed simulant

Detection limits:

- 3.1 mM for UO₂
- 0.08 mM for Pu(IV)

Pu(IV) concentration variable 0.1 to 10 mM Feed composition: 1.3 M $UO_2(NO_3)_2$ in 0.8 M HNO_3 $UO_2(NO_3)_2$ does not interfere with Pu measurements

Proof-of-Concept: Applicability of spectroscopic methods for commercial BWR ATM-109 fuel measurements

- Commercial fuel: ATM-109, BWR, Quad Cities I reactor; 70 MWd/kg; high burnup
- Fuel dissolved in HNO₃

■ Performed batch contact on each aqueous feed with 30 vol% TBP-

dodecane

- Feed, Organic, Raffinate phases successfully measured by
 - Raman, Vis-NIR
- Excellent Agreement of spectroscopic determination with ORIGEN code and ICP measurement

ATM-109	U	Pu	Np	Nd
burnup code (ORIGEN-ARP)	0.720	7.50E-03	4.60E-04	1.10E-02
ICP-MS	0.721	8.99E-03	4.70E-04	0.84E-02
Spectroscopy	0.719	8.90E-03	4.70E-04	1.10E-02
Spectroscopic / ICP ratio	1.0	0.99	1.0	1.3

Molar units

Task objectives FY15/16

Nuclear Energy

Support the roadmap for on-line monitoring and help define the activities required for a technology transfer to an operating reprocessing plant, H-Canyon facility

- CEA-DOE collaboration
 - demonstrate micro-Raman probe for use on U and HNO₃ measurements
 - interface micro-Raman probe for measurement at the microfluidic scale
- SBIR Grant: Spectra Solutions, Inc. / PNNL
 - development of combined Raman/UV-vis probe for use in reprocessing environment
- Advances in spectroscopic method for weak acid (pH) monitoring, supporting advanced TALSPEAK
 - Instrumented two phase extraction system for kinetic monitoring
 - Spectroscopic process monitoring for real-time feedback control

Measurement on micro-scale: Schematic of Raman Microprobe

A) Microfluidic mixing chamber showing inlets for reagents (Solution A and B), and outlet for mixture. B) Schematic of the Raman Microscope-video probe adjacent to the microfluidic cell shown with the laser focus within the microchannels of the mixing chamber

Photograph of Micro-Raman Probe Without the External Protective Housing

Nuclear Energy

Actuator

Laser

1st generation probe

2nd generation

Photograph of MicroRaman Probe Positioned in Front of Flow Cell

Micro-Raman probe

Macro-Raman probe

Detection limits for micro-Raman probe

Macro-Raman Probe

Α UO₂ (0.25 M) UO., (0.50 M) UO₂ (1.25 M) UO., (1.50 M) UO., (2.00 M) Raman Response UO₂²⁺ NO₃-1000 800 900 1100 wavenumber, cm⁻¹

Micro-Raman Probe

Detection limit, mM	HNO ₃	Total Nitrate	UO ₂ (NO ₃) ₂
macro-Raman Probe	5.7	5.5	2.9
micro-Raman Probe	6.8	6.7	4.5

Model predictions for UO₂(NO₃)₂, HNO₃, and total nitrate using the Micro-Raman Probe

PLS predictions using micro-Raman probe

Solution composition mixtures of $UO_2(NO_3)_2$ (0 – 2M) and HNO₃ (0 – 8M)

Raman Spectra as a Function of Time for Varying Nitric Acid Solutions in 8 µL cell

Soln ID	HNO ₃	Soln ID	HNO ₃
S-1	0	S-9	6.0
S-2	1.0	S-10	5.0
S-3	2.0	S11	4.0
S-4	3.0	S-12	3.0
S-5	4.0	S-13	2.0
S-6	5.0	S14	1.0
S-7	6.0	S-15	0
S-8	8.0	S16	8.0
		S-17	0

Micro-Raman probe with 8 μL cell

Flow rate: 1 mL/min

Raman Spectra as a Function of Time for Varying Nitric Acid Solutions in 8 µL cell

Micro-Raman probe with 8 µL cell

MicroRaman spectra as a function of time for varying $UO_2(NO_3)_2$ and nitric acid Solutions in 8 µL cell

Nitric acid range: 0 - 3M $UO_2(NO_3)_2$ range: 0 - 2Mtotal nitrate range: 0 - 7M

PLS model predictions of varying $UO_2(NO_3)_2$ and nitric acid solutions in 8 µL cell

SBIR collaboration grant: Spectra Solutions, Inc. / PNNL

"Industrial Scale Accounting Control and Process Monitoring Spectroscopic System for Nuclear Material Recovery Process"

- Hardened, combined UV-vis/Raman, process monitoring system for use in commercial reprocessing environment
- Phase 1: Funded May 2015. (May 2015 Jan 2016)
 - fabricate and demonstrate utility of combined UV-vis/Raman Probe
- Goal: to coordinate hardware development/demonstration under SBIR with deployment under FCRD
- Related FCRD activity
 - Planning for H-Canyon process monitoring demonstration

SBIR Phase 1 grant: combined UV-vis/Raman probe

SBIR Grant: An Industrial Scale Accounting Control and Process Monitoring Spectroscopic System for Nuclear Material Recovery Process PNNL/ Spectra Solutions, Inc.

SBIR combined UV-vis/Raman probe

Nuclear Energy

Concentration profile of Nitrate and Nd³⁺ during flow experiment

Chemometric (PLS) analysis of Raman and UV-vis spectra

- Nitrate determined by Raman
 - Nd³⁺ determined by UVvis

NaNO _{3.} M	$Nd(NO_3)_3$, mM
0.00	0
0.50	0
1.00	0
2.00	0
3.00	0
4.00	0
4.00	5.0
4.00	10.0
4.00	15.0
4.00	20.0
4.00	30.0
0.00	0

SBIR summary and planning

Nuclear Energy

- Demonstrated utility of integrated UV-vis/Raman probe design using non-rad NaNO₃/Nd(NO₃)₃ solutions
- Phase 2: Funding FY 2016 (TBD)
 - Goal to fabricate and demonstrate hardened combined UV-vis/Raman probe and spectrometer system.
- **■** Experiments planned under Phase 2 funding
 - U, Pu, Np, variable HNO₃ measurements with combined probe
 - Demonstration purposes
 - Generate database for eventual deployment

Conclusions

Nuclear Energy

Using simulants and BWR Spent Fuel

- Demonstrated quantitative spectroscopic measurement on actual commercial fuel samples under fuel reprocessing conditions
 - Raman for on-line monitoring of U(VI), nitrate, and HNO₃ concentrations, for both aqueous and organic phases
 - Vis/NIR for on-line monitoring of Np(V/VI), Pu(IV/VI), Nd(III)

■ Demonstrated micro-Raman probe for use on U and HNO₃ measurements

Detection limits and predictive modeling of U, HNO₃ and nitrate using static solutions

Interfaced micro-Raman probe with commercial micro-flow cell

• Demonstrated monitoring of variable HNO₃ and UO₂(NO₃)₂ with micro-volume flow cells

Future plans for on-line process monitoring

Collaborative demonstration on commercial (larger) scale

Acknowledgement

Nuclear Energy

- U.S. Department of Energy (DOE): Fuel Cycle Research and Development (FCR&D), Separations Campaign (NE)
- Human Capital Development project under the Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and Arms Control (NA-24)
- U.S. DOE; Visiting Faculty Program (VFP), Office of Science (SC)
- Small Business Innovative Research (SBIR) Grant, Office of Science (SC)
- FCRD young investigator of the year awardee (Amanda Casella)

