Advanced Instrumentation, Information, and Control Systems Technologies

Online Monitoring of Material Aging and Degradation

Vivek Agarwal

Idaho Falls, Idaho October 29, 2015

Light Water Reactor Sustainability R&D Program

Passive Structures in Nuclear Power Plants

- The Advanced Instrumentation,
 Information, and Control Technologies
 Pathway under the LWRS program
 conducts research to address
 - Aging and reliability concerns within the current operating fleet of light water reactors
 - Enhance operational and maintenance (O&M) efficiency
 - Improved reliability, productivity, and safety
- Capability to determine the "remaining useful life" of a component to justify its continued operation over an extended plant life

Concrete Structures in Nuclear Power Plants

- All nuclear power plants contain concrete structures
 - Primary containment
 - Containment internal structures
 - Secondary containments/reactor buildings
 - Spent fuel pools and Cooling towers
- Concrete structures provide important foundation, support, shielding, and containment functions
- Assessment and management of aging concrete structures is essential for plant long-term operation

Concrete Prognostics and Health Management Framework

Damage Modeling:

 Utilize ASR degradation models to develop fault signatures that can be used for monitoring of damage interface

Monitoring:

Investigating full field imaging techniques – optical, thermal, and acoustic

Big Data Analytics:

 Heterogeneous (structured, unstructured, and binary) data need to be stored, processed, and analyzed to develop diagnostic and prognostic models

Uncertainty Quantification:

 Quantification of Aleatory and Epistemic sources of uncertainties is essential for making risk-informed decision

Some Current Concrete Concerns

- Alkali-Silica Reaction (ASR) in reinforced concrete structures (Seabrook)
- Delamination cracking in tendons (Crystal River and Davis-Besse)
- Seismic impact on aged concrete structures

Other Degradation Modes

Besides ASR, other degradation modes exist

Degradation: Alkali-Silica Reaction (ASR)

- ASR is an intrinsic chemical reaction that forms a gel in concrete pores, expands, and causes stress and cracking of concrete
- Can be associated with corrosion of steel reinforcement bars and other steel structures embedded in the concrete
- Water containing sulfate or chloride causes ASR

Challenges

- Extent of ASR occurrence
 - location throughout the plant
 - position within the thickness of the concrete wall
- Extent to which ASR has reduced mechanical properties of concrete

Monitoring

Infrared Thermographic Camera

Concrete Sample

Monitoring

Light Water Reactor Sustainability

DIC image at minute 24 of loading

Slab with holes

Thermographic image at minute 24 of loading

Damage

Data Analysis and Diagnosis

- Diagnosis based on processed monitoring data is subjected to uncertainties
 - Due to processing parameters
 - Measurement errors
- Uncertaințies are quantified

Light Water Reactor Sustainability

Raw acoustic image

Sobel filtered image

Diagnosis

Damage Modeling

Finite Element Analysis

0,999 ASR_ex 0,999 0,99924 0,99924

ASR extent at t=400 days.

MOOSE Framework for ASR Modeling

GRIZZLY

Light Water Reactor Sustainability

Isotropic and Anisotropic stress distribution

Simulation Results in GRIZZLY

- ASR expansion test with 3 mm thick steel ring confinement
- Measured lateral strains of the specimen when subjected to 10MPa axial load was used to calibrate model parameters
- Anisotropic ASR swelling model¹ shows better agreement with experiment data

¹Saouma and Perotti (2006): Constitutive Model for Alkali-Aggregate Reactions. ACI Materials Journal, pp. 194-202.

Percolation Theory for Modeling ASR

- Percolation theory describes the behavior of connected clusters in a random graph
- Percolation models are
 - viable models for ASR propagation in existing concrete structures
 - computationally less expensive than high-fidelity physical models

Uncertainty Quantification

Bayesian Network (BN) – Integrates all available information

- Bayesian calibration
 - Markov Chain Monte Carlo (MCMC)
- Diagnosis
 - Damage identification, localization and quantification
- Prognosis
 - Monte Carlo Sampling

Gaussian process (GP) surrogate model

- FE model is expensive to do MCMC
- The surrogate model is trained with original model runs at selected training points
- Prediction of surrogate model has uncertainty >
 Normal distribution with mean and standard deviation

Example of DBN

Example of GP surrogate model

Damage Prognosis & Uncertainty Quantification

- The cracks diagnosed by monitoring were incorporated in the finite element model
- The finite element model is used for prognosis
- Crack areas predicted for six sets of crack diagnoses using different data analytic features are used for uncertainty quantification of crack growth

Diagnosis UQ

Mean = 9.44 sq. in.

Stdev = 2.11 sq. in.

Prognosis UQ

Mean = 14.3 sq. in.

Stdev = 3.71 sq. in.

Finite element modeling for prognosis

Concrete Samples with Embedded Glass

Vanderbilt developed 6 samples of dimensions 9 in. x 5 in. x 2 in.

Technology Impact

- Innovative and advanced online monitoring technology for passive structures (a.k.a structural health monitoring) in nuclear power plants
- Enables risk-informed decision for
 - license renewal application of existing fleet of light water reactors
 - Mitigation strategies
- Development of a framework that integrates
 - Physics based modeling information
 - Experimental data
 - Diagnosis and prognosis outcomes
 - Uncertainties quantification

Summary and Future Research

Summary

- Demonstrated proof-of-concept of concrete PHM framework on a small sized concrete sample subjected to thermal loading and stress
- All modeling, experimental, and data analytics results were integrated using Bayesian network
 - Uncertainty in model calibration, diagnosis, and prognosis were calibrated
 - Diagnosis and prognosis uncertainty quantification is valuable for decision-making
- Implemented anisotropic ASR expansion in the GRIZZLY code based on Saouma and Perotti developed model
- Utilized ASR expansion implemented in the GRIZZLY code to study the percolation aspects of concrete

Summary and Future Research

Future Research

- Vanderbilt University will develop medium-sized concrete samples with ASR degradation using reactive aggregates with and without steel reinforcement
- INL will collaborate with Material Aging and Degradation Pathway on development of large scale concrete sample with ASR
- A data analytics and visualization framework will be developed to analyze and visualize heterogeneous data on a unified and easy-to-use platform

