
Office Of Nuclear Energy
 Sensors and Instrumentation

Annual Review Meeting

(A Method for Quantifying the Dependability
Attributes of Software-Based Safety Critical

Instrumentation and Control Systems in
Nuclear Power Plants)

(Carol Smidts)
(The Ohio State University)

(NEET 2)

October 28-29, 2015

2

Project Overview

n Goal, and Objectives
Develop measures and methods to assess dependability attributes
early and throughout the life-cycle process of software development

n Participants
•  University PI: Dr. Carol Smidts, The Ohio State University (Started

February 1, 2014)
•  Industry PI: Mr. Ted Quinn, Technology Resources (Started February 1,

2014)
•  Postdoctoral researcher: Dr. Fuqun Huang, The Ohio State University

(Started June 1, 2014)
•  PhD Students: Xiang Li, The Ohio State University (Started May 20,

2014)
•  PhD Students: Boyuan Li, The Ohio State University (Started Aug 20,

2014)

3

Project Overview (cont’d)

n Schedule

Tasks Date
Kick-off meeting April 1 to May 15, 2014

Elicit the causal map describing the
dependencies between dependability attributes

May15 to July 15, 2014

For each dependability attributes, elicit the causal
map describing occurrence of the event of
interest

May 15 to August 31, 2014

Relate measurable concepts to each concept in
the event of interest level

August 31 to December 31, 2014

Assessing Coverage December 31, 2014 to January 31, 2015

Developing Missing Measures January 31, 2015 to June 31, 2015

Experimental Evaluation June 31, 2015 to December 31, 2015

4

Accomplishments

n Designed a new notation system, Causal Mechanism Graph, to
capture relationships between software dependability attributes
§  Data Collection based on expert opinion elicitation

Ø  More than 600 experts were identified, 54 were selected based on their relevant
publications demonstrating knowledge in at least two dependability attributes.

Ø  The expert selection procedure was inspired from the knapsack problem.

Ø  A series of semi-structured questionnaire was designed to elicit their knowledge.

5

Accomplishments (cont’d)

< S10, -, >

Software
Reliability

Software
Safety<S1, +, >

Software
Security

< S4,S5, +, >

<S2, S3, +, >< S7, S8, +, >

Software
Maintainabilit

y

< S20, -, ><S21,+, >

Software
Availability

< S22, +, >

<S
11

, S
12

, S
13

, S
14

, +
, >

<
S1

5,
 S

16
, S

17
, S

18
, S

19
, +

, >

< S6, -, >

< S9, -, >

A sample scenario list
S5: Higher reliability level implies a more mature development process
S6: Specialized nature of vulnerabilities and specialized approaches needed to
exploit them, highly reliable software can be very insecure;
S8: Higher security level implies a more mature development process;
S9: Higher security level implies testing for vulnerabilities can take effort
away from testing for general defects

The dependencies
between software
dependability attributes

6

Accomplishments (cont’d)

n For each dependability attribute, elicit the causal mechanism
graph describing occurrence of the event of interest
•  Experts’ responses to the questionnaires also contain detailed information

on the causal factors that result in failures of the dependability attributes.
For instance, software security failures are caused by the factors shown
in the figure in the next slide.

•  The method used to extract the causal failure mechanisms includes:
1)  Merging of the individual causal maps related to a particular dependability

attribute;
2)  Slicing of the map which retains only consensus concepts and relations.

7

Accomplishments (cont’d)

n Consensus causal mechanism graph (Example: for software
security)

⊙

Software security
failures

Vulnerabilities

Security

⊗

Vulnerabilities have
been exploited

< , +, 2 >

Design for the
detection/prevention

of intrusion

< , +, 4>

< , -,4 >

< , +, 2>

< , +, 4>

< , -, 2 >

Attack surface

< , +, 4> < , +, 2 >

Attacks

(5)

(4)

(2)

(4)

(4)

(4) (2)

8

Accomplishments (cont’d)

n Relate measurable concepts to each concept in the event of
interest level
•  Identify measureable characteristics and corresponding measures for the

outcome of interest associated with each software dependability attribute
–  Based on the causal map for each dependability attribute, questionnaires are

designed to elicit experts’ opinions on the measurable concepts and
corresponding measures for each event of interest. For instance, a
measureable concept for software security is “vulnerability”, and the experts
are asked to provide the measures for “vulnerability”.

–  The next four slides provide the frameworks used to elicit measures and
example results for software availability, software safety, software security and
software maintainability.

9

Accomplishments (cont’d)

n Relate measurable concepts to each concept in the event of
interest level (cont’d) Notes

< arg1, arg2 > Describes the scenario for which either a positive or a negative
relation is present. Arg1 represents the scenario, while arg2 represents the positive or
negative relation.

S1: The scenarios/contexts/circumstances/pre-conditions under which operating
environments trigger software residual defects.

S2: The scenarios/contexts/circumstances/pre-conditions under which software
failures are not detected or recovered.

+ Positive influence: a “positive” influence is said to exist from A to B when an
increase in A leads to an increase in B, and a decrease in A leads to a decrease in B.

- Negative influence: a “negative” influence is said to exist from A to B when an
increase in A leads to a decrease in B, and a decrease in A leads to an increase in B.

Software Availability Failure: the inability of a software system or component
being operational and accessible when required for use.

⊗
a1

a2
b Effect b is present when a1	
 is in Conflict with a2.

⊙

a1

a2
b Effect b is present when 	
 a2 Triggers/Activates a1.

Software
residual defects

⊙

Operating
environments

Software errors

Software failures

Software fault
tolerant design

⊗
< , -

> < , + >

Software
availability

failures

⊗

Software
Availability

< , - >
< , + >

< , + >

< , - >

 Conflict

Trigger

Conflict

Design for software
failure detection and

recovery

< , + >

Potential
operability
problems

⊙

< , +
 > < , + >

Operating
errors

Operability: the capability of the software component to enable the user
(system developer) to operate and control it.

§ Eliciting measures for software availability

Entity class Software residual defects
Types

Attributes Origin Impact (Expert_Rich,
Matias)

Amount
(Expert_Yennun,
M)

Density
(Expert_Miroslaw,
Matias)

Measures Base measure:
1) stages of
software
development
2) structural or
functional
components

(Expert_Rich) Cost
impact: sum of defects
number at different
development stages
(Expert_M) with
different weights: earlier
defects weight more.
System impact: impact
levels to the system,
derived from the density
and origin in terms of
components
(Expert_Matias).

(Expert_ M) The
number of defects
remaining in the
software after
release

(Expert_Miroslaw,
Matias)
The number of defects
left in the program per
lines of code (f/LOC).

Measurement
Approaches

…. …. ….
. ….

Measurement
instruments

…. …. ….
….

Causal factors ….

Correlative
factors

….

10

Accomplishments (cont’d)

n Relate measurable concepts to each concept in the event of
interest level (cont’d)

§ Eliciting measures for software safety

Software safety
failures

Hazards originating
from software

Safety

< , + >

< , - >

< , + >

< , + >

AND

Missing
software safety
requirements

Incorrect,
inconsistent and

ambiguous software
safety requirements

Correct software
safety

requirements

(Potential)
software safety
requirements

Identified
software safety
requirements

⊆⊆

⊆⊆

⊆⊆

⊆⊆

Software safety
(defensive)

design

Faulty software
safety design

Correct
software safety

design

< , + >

⊆⊆ ⊆⊆

….

Missing
software safety

design

⊆⊆

OR

Software safety
failures under

anticipated operating
conditions

Software safety
failures under
unanticipated

operating conditions

⊆⊆⊆⊆

< , + >

< , + >

Anticipated
operating
conditions

Unanticipated
operating
conditions

< , + >

Operating
conditions

⊆⊆

⊆⊆ N

N

N

Software faults

⊙⊙

Software failures
under anticipated

operating conditions

Software failures
under unanticipated
operating conditions

⊆⊆

⊆⊆

Anticipated
operating
conditions

Unanticipated
operating
conditions

⊙⊙
< , + >< , + >

< , + >

Incorrect,
inconsistent and

ambiguous software
requirements

Errors in software
design and

implementation

< , + > < , + >

Missing
software safety
requirements

Faulty software
safety design

⊆⊆

Missing
software

requirements

OR

Incorrect,
inconsistent and

ambiguous software
safety requirements

⊆⊆ ⊆⊆

Notes (1)

< arg1, arg2 > Describes the scenario for which either a positive or a negative
relation is present. Arg1 represents the scenario, while arg2 represents the positive or
negative relation.

S1: The scenarios/contexts/circumstances/pre-conditions under which the available
maintenance resources and maintenance capability do not meet maintenance
requirements.

+ Positive influence: a “positive” influence is said to exist from A to B when an
increase in A leads to an increase in B, and a decrease in A leads to a decrease in B.

- Negative influence: a “negative” influence is said to exist from A to B when an
increase in A leads to a decrease in B, and a decrease in A leads to an increase in B.

⊙

a1

a2
b Effect b is present when 	
 a2 Triggers/Activates a1.

a1

a2
bN

Entity a2 is the complement of entity a1

at the entity b.

a1 a2
⊆

A set a1 is a subset of a set a2 .

a1
a2 b Entity a1 AND entity a2 form the intersection a1 ∩a2,

which is connected to the entity b.

a1
a2 b Entity a1 OR entity a2 form the union a1 ∪ a2 , which is

connected to the entity b.

A dashed symbol (e.g., in Figure 1) indicates that the

 concept is identical to the corresponding concept drawn with a solid line in the same

causal map. Such dashed symbols are used to achieve a clearer layout of a causal map.

Missing
software safety
requirements

Notes (2)Notes (2)

Entity class	
 Software safety requirements2	

Entity sub-class/
Entity/ Types	

Requirements are the statement of the problem to be solved. Requirements differ from
the system specification in that the specification is the solution to the problem stated
by the requirements. For software safety requirements, the problem derives from the

application domain. Determining the requirements is thus the primary responsibility of
the domain experts, although the statement of the problem (the requirements) has to
admit the possibility of a solution (the specification). Thus, computer engineers need

to be consulted to ensure that this circumstance is possible.	

Any subclasses that might exist in the area of requirements are only going to be visible
to the domain experts. One can speculate about topics such as incompleteness (errors

of omission) but the determination will have to rest with the domain experts.	

Attributes	

Attribute #1:	

Completeness	

Attribute #2:	

Consistency	

Attribute #N:	

Accuracy	

Measures	

Degree of belief that
stated requirements are
complete	

Formal models of
requirements	

Degree of belief that stated
requirements are consistent	

Formal models of
requirements	

Degree of belief that
stated requirements are
accurate	

Formal models of
requirements	

Measurement
Approaches	

Expert judgment	

Proof of the absence of
faults to the extent that
the requirements can be
modeled in a formal
model	

Expert judgment	

Proof of the absence of faults
to the extent that the
requirements can be modeled
in a formal model	

Expert judgment	

Proof of the absence of
faults to the extent that
the requirements can be
modeled in a formal
model	

Causal factors or
mechanisms	

Human error, because the determination of requirements is informal and largely
lacking in any form of mechanical analysis or assessment. This limitation is
fundamental, because a formal statement of requirements relies upon an interpretation
of the associated logic, and this interpretation further relies upon the meanings that
humans give to terms and phrases in natural languages.	

Correlative factors	

11

Accomplishments (cont’d)

n Relate measurable concepts to each concept in the event of
interest level (cont’d)

§ Eliciting measures for software security

⊙

Software security
failures

Vulnerabilities

Security

⊗

< , + >

Vulnerabilities have
been exploited

< S2 , + >

?

Attacks

Design for the
detection/prevention

of intrusion

?

?

< S1, + >

< - >

< , + >

Intermediate
Event/Variable

1 (E1)

E3

E2

E4

E5

Causal factors
group 1 (CFG1)

CFG2

CFG3
Connection1

(C1): Activate

C2:
Conflict

< ,
 +

>

< , - >

Notes

< arg1, arg2 > Describes the scenario for which either a positive or a negative
relation is present. Arg1 represents the scenario, while arg2 represents the positive or
negative relation.

S1: The scenarios/contexts/circumstances/pre-conditions under which an attack
activates vulnerabilities.

S2: The scenarios/contexts/circumstances/pre-conditions under which intrusions are
not detected/prevented.

+ Positive influence: a “positive” influence is said to exist from A to B when an
increase in A leads to an increase in B, and a decrease in A leads to a decrease in B.

- Negative influence: a “negative” influence is said to exist from A to B when an
increase in A leads to a decrease in B, and a decrease in A leads to an increase in B.

Software security failure: the inability of a software system or component to protect
from accidental or malicious access, use, modification, destruction, or disclosure.

⊗
a1

a2
b Effect b is present when a1	
 is in Conflict with a2.

⊙

a1

a2
b Effect b is present when 	
 a2 Triggers/Activates a1.

Entity class Attacks
Entity sub-
class or
Entity
(Types)

Attack

Attributes Likelihood Difficulty Impact
Measures 1.  Probability of an attack;

2.  Probability of it
succeeding (in Exploiting
a vulnerability);

3.  Probability of it failing;
4.  The number of observed

attempts to exploit a
known software
vulnerability

1.  Difficulty level;
2.  Time required to

carry the attack;
3.  Resource required

to carry the attack;
4.  Accessibility level

(insider, remote)
for the attacker

1.  Number of people and
systems affected;

2.  Severity (derived
measure), S(A) =
normalization [i(C) +
i(I) + i(V)];

3.  Cost of the attack for
the attacker

Measuremen
t Approaches

Potential attacks can be measured in terms of available exploits using public sources of exploits,
e.g., the Metasploit DB;
Attacks that already happened can be measured by consulting published statistics about security
incidents, e.g., from CERT

Measuremen
t instruments

Public sources of exploits, e.g., the Metasploit DB;
Published statistics about security incidents, e.g., from CERT

Causal
factors

1.  Malicious motivation
2.  ……….

Correlative
factors

Number of times it has actually taken place in the past (and succeeded or failed).

Analyzer’s
summary

These measures are very clear and useful for attack assessment.

12

Accomplishments (cont’d)

n Relate measurable concepts to each concept in the event of
interest level (cont’d)

§ Eliciting measures for software maintainability

Maintenance
requirements

Complexity

Software maintainability
failures

∈

Software
maintainability

Content

OR

⊗

< , - >

Maintenance
capability

Available
maintenance

resource

Software
Document

ation
Tools Personnel

capacity
Process

capability

⊆

⊆

⊆ ⊆

? ?

⊆ ⊆

∈

?

?

∈

⊆

< S1 , + >

Causal factors
group 1 (CFG1)

CFG2
CFG3

Intermediate
Event/Variable 1

(E1) ?

….

Intermediate
Event/Variable
Group 1 (EG1)

Connection1
(C1): Property

C2: Subset
C3: Subset

C4

C5: Conflict

C6

⊆

Notes

< arg1, arg2 > Describes the scenario for which either a positive or a negative
relation is present. Arg1 represents the scenario, while arg2 represents the positive or
negative relation.

S1: The scenarios/contexts/circumstances/pre-conditions under which the available
maintenance resources and maintenance capability do not meet maintenance
requirements.

+ Positive influence: a “positive” influence is said to exist from A to B when an
increase in A leads to an increase in B, and a decrease in A leads to a decrease in B.

- Negative influence: a “negative” influence is said to exist from A to B when an
increase in A leads to a decrease in B, and a decrease in A leads to an increase in B.

Software Maintainability Failure: the inability of a software system or component
being modified to change or add capabilities, correct faults or defects, improve
performance or other attributes, or adapt to a changed environment in a specified
time.

⊗
a1

a2
b

Effect b is present when a1	
 is in
Conflict with a2.

a1 a2
⊆ A set a1 is a subset of a set a2.

Sa1
∈ A property a1 is special quality or

characteristic of an entity, S.

Entity class maintenance capability
Entity sub-
class or Entity
(Types)

Tool capability Staff capability

Attributes Availability/successful
usage of tools

Experience Compatibility of
maintenance process

established
Measures . code complexity

•  change impact
•  re-engineering
•  Regression
•  testing
•  D e f e c t

management

�  Years of experience with
the technology of the
maintained system

�  Years of experience with
the maintained system

�  Years of experience with
the specific role in the
maintenance project

�  Years of experience with
t h e s o f t w a r e
development tools used

The degree to which the
maintenance
organization’s established
processes are compatible
with the specified or
actual maintainability

Measurement
Approaches

1.  c o d e
c o m p l e x i t y
a n a l y s i s :
c o m p l e x i t y
measurement

2.  ….

Measurement
instruments
Causal factors …..

Correlative
factors
Analyzer’s
summary

13

Accomplishments (cont’d)

n Assessing Coverage
•  The coverage of measures for each software dependability attribute is

assessed at three levels:
–  Attribute level

•  where E is the total number of Entities, and A is the total number of the Properties
for the Entity e.

–  Entity level
•  Use capture-recapture models to estimate the extent to which an Entity’s Properties

are covered
–  Relation level

1 1

1 1

(,)
()

1

E A

A
e a

A E A

e a

C a e
C Software DependabilityAttribute = =

= =

=
∑∑

∑∑

Number of Total Edges UncoveredEdges()
Number of Total EdgesRC Dependability Attribute −

=

14

Accomplishments (cont’d)

•  These three levels provide a structural perspective on the coverage. They
together provide insights into whether measurable propagation paths
exist from the concepts at the bottom of the causal mechanism graph to
those at the top of the causal mechanism graph

⊙

Software security
failures

Vulnerabilities

Security

⊗

Vulnerabilities have
been exploited

Attacks

Design for the
detection/prevention

of intrusion

Security Subclass Attributes M A I

N/A Quantity 12 0 1

CE [100.0%, 100.0%]

	

Software

security

failures

Subclass Attributes M A I

Softwar

e

security

failure

Occurrenc

e

1 1 1

Time of

occurrence

2

Quantity 2

Impact 3

CE [70.1%, 77.5%]

Vulnerabili

ties have

been

exploited

Subclass Attributes M A I

N/A Existence 1 1 1

Quantity 2

Impact 5

CE [72.4%, 72.4%]

	

Design for the

detection/prevention

of intrusion

Subclass Attributes M A I

N/A Effectiveness 4 1 0

CE [100.0%, 100.0%]

	

Vulner

abilitie

s

Subcl

ass

Attributes M A I

N/A Existence 2 3 1

Probabilit

y of being

activated

1

Exposure

risk

2

Exploitab

ility

3

Impact 3

CE [90.4%, 93.3%]

Attacks Subclass Attributes M A I

N/A Quantity 1 2 2

Likelihood 3

Difficulty 4

Impact 3

CE [87.5%, 95.8%]

	

Notations
M: measure
A: measurement approach
I: measurement instrument
CE: coverage at the entity level

15

Accomplishments (cont’d)

n Developing Missing Measures
•  For attributes that are not covered completely, we develop new

questionnaires to collect missing measures.
•  By collecting data for missing measures, the coverage of each attribute is

recalculated. As a result, most of the coverage increase.

16

Accomplishments (cont’d)

n Evaluating the relative importance of dependability attributes
•  A questionnaire was designed to evaluate the relative importance of the

various dependability attributes in the context of a nuclear reactor
protection system.

•  The Analytical Hierarchy Process (AHP) method was used to analyze the
data obtained

Which attribute is the
most important

Electricity
Production

Environmental
Protection

Community
Involvement

Reliability SecuritySafetyMaintainbilityAvailability

...Public Safety

AHP structure for the different goals

Attribute Relative importance
Safety 0.26667372
Reliability 0.20710062
Security 0.20451856
Availability 0.19482231
Maintainability 0.12688479

17

Accomplishments (cont’d)

n Experimental Evaluation and Attributes Quantification

•  The most important dependability attribute
for a Reactor Protection System was
determined by the nuclear stakeholders to
be “Safety” .

•  The case study therefore focuses on the
evaluation of software safety.

•  We focus on a limited scope, i.e. the first
phase of development - the requirements
phase

•  The causal map was tailored to the
requirements phase and is being
translated into a Bayesian Belief Network
for quantification.

18

Accomplishments (cont’d)

n Number of experts who contributed to this project

Covered dependability
and/or attributes	

Expert Panel #1 	
 Expert Panel #2 	
 Expert Panel
#3	
 Expert Panel #4	

Focus on
dependencies and
causal mechanism	

Focus on causal
mechanism
verification and
measurement	

Focus on
missing
measures	

Focus on importance ranking	

Academia	
 Government	
 Industry 	

S o f t w a r e
dependability

8 - -	

2	
 4	
 6	

Software reliability 7 - -	

Software safety 5 5 4	

Software security 5 7 4	

Software availability 5 6 1	

S o f t w a r e
maintainability

4 6 3	

Total number of
experts for each
panel

11 24 12	
 12	

Total number of
e x p e r t s f o r t h e
project

59	

19

Technology Impact

n Impact on software dependability research
 Designed a new powerful notation system, called causal mechanism

graph (CMG), to elicit and represent experts’ cause-effect knowledge
in the software dependability domain.

n These notations enable practitioners to model causal mechanisms more
accurately , and effectively capture the recurrent patterns of comprehensive
causal mechanisms existing in the software dependability domain, i.e.,
activate and conflict.

n CMG allows researchers to model causal mechanisms in a “robust” manner:
when an expert’s knowledge on a causal mechanism is very accurate,
notations are available to model the mechanisms accurately; when an
expert’s knowledge is vague (e.g., only causal factors and their influence
types are identified), the corresponding causal mechanism graph can be
reduced to a conventional causal map and/or a Bayesian Network.

20

Technology Impact (cont’d)

n Impact on software dependability research (cont’d)
 Designed a systematic measurement framework for software

dependability.
n This framework consists of two components: the Causal Mechanism Graph

(CMG) and the Ontology of Measurement (OM). The CMG provides
systematic solutions to “what concepts should be measured”, “why these
concepts should be measured” and “when these concepts can be
measured”, while the OM provides answers to “how these concepts should
be measured”.

n The framework is an “integrated” framework that can be applied to different
attributes as it is from a cause-effect perspective. The quantification can be
both prediction and/or estimation, since the framework allows practitioners to
incorporate evidence at various phases of the software lifecycle, e.g. failures
occurring at the time of software system operation, and process maturity at
the time of development.

21

Technology Impact (cont’d)

n Impacts on the Nuclear Industry
n Identified the set of important variables that practitioners should

control to reduce software dependability risks.
n Determined the importance ranking of software dependability

attributes according to the concerns of the stakeholders. This
importance ranking will provide guidance for management and
certification of software dependability in the nuclear industry.

n Obtained a large set of measures for quantifying software reliability,
safety, security, availability and maintainability. These measures
were elicited from a total of 59 domain experts.

n These measures can be used to guide development, which will
enhance dependability of the final software product, and to help build
a safety/dependability case.

22

Conclusion

n The project identified and modeled the causal mechanisms that
influence software dependability, and provided an integrated
framework to assess software dependability.

n The models and methods obtained in the project can be further
used to improve software dependability design, guide software
dependability risk management, and ultimately reduce
dependability risks of Software-Based Safety Critical
Instrumentation and Control Systems in Nuclear Power Plants.

