Nuclear Energy

Office Of Nuclear Energy Sensors and Instrumentation Annual Review Meeting

High Spatial Resolution Distributed Fiber-Optic Sensor Networks for Reactors and Fuel Cycle

Kevin P. Chen
University of Pittsburgh, Corning Inc, and Westinghouse
Electric Company
NEET Program

October 28-29, 2015

Project Overview

Nuclear Energy

■ Goal, and Objectives

- Develop new optical fibers for nuclear industry
- Demonstrate distributed multi-functional fiber optical sensors for high spatial resolution measurements
 - $-\mu\epsilon$, T, P, level, chemical, and radiation with high spatial resolutions
- Evaluate various distributed sensing schemes and demonstrate unique capability

■ Participants (End-to-End, Rapid Advancing TRLs)

- University of Pittsburgh: Dr. Kevin P. Chen (PI), Zsolt Poole, Aidong Yan, Rongzhang Chen, and Mohamed Zaghloul
- Westinghouse Electrical Company: Dr. Michael Heibel, Dr. Robert Flammang, and Melissa Walter
- Corning Inc.: Dr. Ming-Jun Li and Jeffrey Stone

■ Schedule:

- 3 Years: One type of new fiber per year
- Year 1: active fiber sensing technique developments, multi-functional fiber fabrications
- Year 2: distributed pressure and temperature measurements in radiation environments
- Year 3: distributed hydrogen sensing in radiation environments

Project Overview

Nuclear Energy

■ What is unique about fiber optical sensors?

- Resistant to harsh environments
- Fully embeddable into concrete, metal, and existing infrastructures
- Unique capability to perform distributed measurements with high spatial resolution (1-10cm)

■ What is unique about nuclear applications?

- Radiation (among other harsh conditions)
- Need perform a wide arrange of measurements beyond temperature and strains

	Spent Nuclear Fuel Pool	Containment Dome	Steam Generator	Research Facilities (LHC, LMJ, ITER)
Normal Operation Radiation	2 mGy/hr	50 μGy/hr	<10 mGy/hr	50 Gy/day
Normal Operation 20-yr Dosage (Gy)	350 Gy	8.8 Gy	1.75 kGy	200 kGy
Post-Accident Radiation (Gy/hr)	2 mGy/hr	5Gy/hr	5 Gy/hr	N/A
Post-Accident 30-day Dosage (Gy)	1.44 Gy	3.7 kGy	3.7 kGy	N/A

Research Approach

Nuclear Energy

■ Fibers

- Identify (or invent) fiber structures/compositions that are highly robust or highly sensitive to radiations
- Developing new optical fibers with built-in capability to perform distribution radiation measurements (for measurements and for calibration)
- Developing new multi-functional optical fibers for multiple parameter measurements

■ Sensing Technology

- Evaluate various distributed sensing schemes (Rayleigh, Brillouin, FBGs) under radiation for short and long terms measurements
- Develop new distributed sensing technology beyond T/strain measurements
 - Liquid levels
 - Pressure and T simultaneously + radiation
 - Chemical (hydrogen) and spatially resolved chemical reaction

Implementations and Applications in Nuclear Engineering

- Fiber embedding and testing
- New applications (smart cable, small concrete, and ...?)

Accomplishments

■ (Description of milestones, deliverables, outcomes for FY15)

- <u>Deliverable 1:</u> Demonstrated active fiber sensing schemes for multifunctional distributed fiber sensing over a span of 10 meters for both temperature and liquid level sensing.
- <u>Deliverable 2:</u> Developed multi-core, multi-functional fiber cables with integrated capability to monitor radiation with —cm spatial resolutions.
- Outcome 1: Developed nano-material enabled distributed fiber chemical sensors
- Outcome 2: Evaluated various distributed sensing schemes (Rayleigh and Brillouin) and their suitability for distributed measurements in both short and long terms.
- Outcome 3: Evaluated radiation effects on various optical fibers to identify both radiation sensitive and radiation resistant fiber structures.

Accomplishments: New Fibers

Nuclear Energy

Radiation Tests

Hot Cells

- γ radiation: max. ~5000 Gy/hr on fibers
- Performed in Westinghouse Churchill facility
- Loss and Brillouin OTDR schemes
- Rayleigh, FBG in new fibers, DFB lasers (on-going)

Radiation Tests

Nuclear Energy

Radiation Tests

Fiber Types	SMF28	Vascade	High Ge-	Alumina	Random air-hole
RIA (dB/km)	96	61	115	35651	51

- 1MGy γ dosage (Co-60 source)
- SMF-28 standard optical fiber
- Vascade: Corning ultra-low loss, pure silica core/F-doped cladding
- Random air-hole: new all silica fiber
 - Random air-hole cladding (low cost)
 - All silica structures (sustain >400C more than F-doped fibers)

Radiation Resistant Fiber

Radiation Sensitive Fiber

Random Air Holes Fiber

Data/Tests to be done

- Neutron radiation
- Increase dosage to 10 MGy
- · Head-to-head comparison with Rayleigh/FBG
- Test strain/T coefficient vs. radiation

New Capability: 3D Radiation Mapping?

Nuclear Energy

Radiation Field Mapping Radiation induced frequency shift (MHz) Radiation Sensitive fiber 20 Co-60 sources Y-axis (cm) Radiation induced frequency shift (MHz)

Radiation Field Measurements

- 10-cm spatial resolutions
- Brillouin shift as radiation indicators
- ~100 Gy dosage

Distributed Fiber Sensing Schemes

Nuclear Energy

■ Rayleigh OFDR

- Good spatial resolution (1-cm) and reasonable interrogation length (1km)
- Good for distributed loss measurements
- Unreliable under vibration/radiation, especially for long-term measurements (lost reference, or need **find a good reference**)

■ Brillouin OTDR

- Modest spatial resolution (10-50cm), very long interrogation length
- Reliable under vibration, easy calibration and correction under radiation environments

■ FBG

- Low-cost interrogation unit (\$2-4k vs. \$80-\$120k)
- Rapid and reliable measurements (8 kHz sampling)
- Only for multi-point measurements

Distributed Pressure Measurements

Nuclear Energy

Large Diameter Elliptical-Core-Off-Centre Twin-Hole Fiber

- OFDR birefringence measurements
- Rayleigh scattering reference between 2 polarization states
- Demonstrate distributed sensing cross 10-meters

Nuclear Energy

OFDR Measurement Results 800°C

Large Diameter Elliptical-Core-Off-Centre Twin-Hole Fiber

Yr 2: Fibers for Distributed P Sensing

High-T Chemical Sensors

Nuclear Energy

- Nano-Engineered metal oxide sensory film
 - Porosity control for refractive index matching
 - Rare-earth or noble metal dopants for specificity
 - Pd-TiO2
- Sensor must operate >600C
- No electrical components in target environment

Evanescens Rield

Nano-Structured Layer

Fiber Optic Hydrogen Sensor at 700C

Nuclear Energy

Optical Transmission vs. Hydrogen Concentrations

Exposed to various concentrations of hydrogen in nitrogen, recovered with nitrogen Ideal for hydrogen driven energy conversion systems

Distributed H2 measurement at 700C

Nuclear Energy

Distributed H2 measurements with 5-mm Spatial Resolution at 700C!

Yr 3: Fibers for Distributed H2 Sensing

- Goal: chemical sensing as part of fiber functionality
- Explore other species measurements
- Demonstrate distributed sensing cross 10-meters

Accomplishments: Active Fiber Sensors

Nuclear Energy

All-temperature Continuous Level Sensing using self-heated fiber and Rayleigh backscattering:

Fig. 10: schematic of active fiber level sensor in spent fuel rod pools.

Accomplishments: Active Fiber Sensors

Nuclear Energy

- Heating span 10-m.
- Temperature fluctuation might caused by air flow or coating
- 1-10W electricity for heating
- Power off: temperature measurements
- Power on: water level measurement.
- High sensitivity to surrounding medium validated

Fiber Sensor Implementations

Nuclear Energy

Multiple-functional Sensor Embedded in Concretes

Fiber Embedded in Stainless Steel

Technology Impacts

■ Advances the state of the art and support NE and nuclear industry

- Develop distributed fiber sensing solutions to perform robust and multifunctional measurements beyond T and $\mu\epsilon$.
- Develop new optical fibers with an integrated function for distributed radiation measurements.
- Provide unique sensing capability unattainable by other measurement schemes

■ Explain how this technology impacts nuclear stakeholders

- Improve safety of nuclear power systems: distributed fiber chemical sensors for gas measurements (e.g. Hydrogen), distributed fiber sensors to monitor spent nuclear fuel pools, and etc.
- Provide new tools to monitor radiation effects to critical components, systems, and infrastructures.

Conclusion

Nuclear Energy

- Invention and Developments of new optical fibers for sensing for nuclear energy.
- Study of optical fiber responses to radiations using distributed fiber interrogation techniques.
- Evaluate various distributed fiber sensing schemes for short and long terms measurements
- Development of new multi-functional fiber sensing schemes with high spatial resolutions.
- Working with nuclear industry to implement new fiber sensors to improve safety and efficiency.

Questions?

Kevin P. Chen
University of Pittsburgh

Email: pec9@pitt.edu

Tel. 412-624-9675