Nuclear Energy

NEET-3 FY 2012 Award

Accelerated Development of Zr-Bearing Ferritic Steels for Advanced Nuclear Reactors

Lizhen Tan, Ying Yang
Oak Ridge National Laboratory

Beata Thburska-Püschel, Kumar Sridharan University of Wisconsin-Madison

DOE-NE Materials Crosscut Coordination Meeting | Sept. 16, 2015

Alloy Design (ORNL) • Thermodynamic database development Alloy design & fabrication **Testing & Characterization (ORNL)** Mechanical testing No • Thermal aging experiment Microstructural characterization Microstructural simulation Yes **Radiation Resistance (UW)** No • Proton and heavy ion irradiations Microstructure and hardness Yes Recommendation

The Need for Advanced Material Development

■ The escalating global clean-energy need drives higher operating temperatures of power plants for improved thermal efficiency.

Advanced materials with superior high-temperature strength can effectively improve plant economics (reduced commodities, increased thermal efficiency, longer lifetimes), safety margins, and design

flexibility.

Ferritic Steels Have Outstanding Properties for Engineering Design

■ Ferritic steels are important structural materials for nuclear reactors

- Advantages of FM steels over austenitic stainless steels
 - High resistance to radiation-induced void swelling (e.g., ~10 times better at temperatures above 300°C)
 - High thermal conductivity and low thermal expansion

Concerns of The Current FM Steels

Nuclear Energy

Higher Cr₂₃C₆ amount results in greater creep rate.

Laves phase coarsening deteriorates strength.

Time / h

Fe₂(Mo,W) Laves volume fraction (%)

Nuclear Energy

■ Route I: Advanced FM steels

Adjust alloy composition to reduce M₂₃C₆, increase MX, and prevent Z-phase.

■ Route II: Fully ferritic steels

- Prevent softening caused by the $\alpha \rightarrow \gamma$ phase transformation

Approach to Accelerate The Development of Zr-Containing Ferritic Steels

Past: Trial and Error Method; Time-consuming and expensive **Experiment** *Microstructure* **Property** Now/Future: Materials-by-Des n; High efficient and low-cost **Computational Tools** (Software + Database)

Computational Microstructural Modeling

Computational tools used in this study

Software

Computational thermodynamics

- Matcalc 5.51
- Pandat 8.0

Precipitation kinetics

Matcalc 5.51

Database

Thermodynamic property

- OCTANT (in-house)
 Mobility
- MCFe (Non-encrypt)

OCTANT: ORNL Computational Thermodynamics for Applied Nuclear Technology

Thermodynamic database Fe-C-Cr-Mo-Nb-Ti-W-Zr

Nuclear Energy

Binaries							
	С	Cr	Мо	Nb	Ti	W	Zr
Fe	Fe-C	Fe-Cr	Fe-Mo	Fe-Nb	Fe-Ti	Fe-W	Fe-Zr
С		C-Cr	C-Mo	C-Nb	C-Ti	C-W	C-Zr
Cr			Cr-Mo	Cr-Nb	Cr-Ti	Cr-Ti	Cr-Zr
Мо				Mo-Nb	Mo-Ti	Mo-W	Mo-Zr
Nb					Nb-Ti	Nb-W	Nb-Zr
Ti						Ti-W	Ti-Zr
W							W-Zr

X-Y-C Ternaries					
	Мо	Nb	Ti	W	Zr
Cr-C	Cr-Mo-C	Cr-Nb-C	Cr-Ti-C	Cr-W-C	Cr-Zr-C
Mo-C		Mo-Nb-C	Mo-Ti-C	Mo-W-C	Mo-Zr-C
Nb-C			Nb-Ti-C	Nb-W-C	Nb-Zr-C
Ti-C				W-Ti-C	Ti-Zr-C
W-C					W-Zr-C

Fe-X-Y Ternaries						
	Cr	Мо	Nb	Ti	W	Zr
Fe-C	Fe-C-Cr	Fe-C-Mo	Fe-C-Nb	Fe-C-Ti	Fe-C-W	Fe-C-Zr
Fe-Cr		Fe-Cr-Mo	Fe-Cr-Nb	Fe-Cr-Ti	Fe-Cr-W	Fe-Cr-Zr
Fe-Mo			Fe-Mo-Nb	Fe-Mo-Ti	Fe-Mo-W	Fe-Mo-Zr
Fe-Nb				Fe-Nb-Ti	Fe-Nb-W	Fe-Nb-Zr
Fe-Ti					Fe-Ti-W	Fe-Ti-Zr
Fe-W						Fe-W-Zr

From literature

From this work

Design of Zr-Bearing Alloys

Route I: Advanced FM steels

 9Cr ferritic-martensitic steels (T alloys): Better phase stability and lower radiation-induced DBTT shift than 12Cr FM steels.

■ Router II: Fully ferritic steels

- 15Cr ferritic stainless steels (L alloys): Better corrosion resistance than lower Cr steels, negligible SCC issue, and without temperature-induced α – γ phase transformation in FM steels.
- Intermetallics-strengthened ferritic alloys (Z alloys): Brand-new ferritic alloys without temperature-induced α γ phase transformation in FM steels.

■ Reference alloy: Grade 91

Aims:

- Increase MX;
- Reduce M₂₃C₆;
- Eliminate Z-phase;
- Not much change to Laves phase.
- Advantages: The experience on steelmaking and welding of conventional FM steels can be directly employed.

- T alloys showed noticeable increases in yield strength (100-300 MPa) compensated with reductions in total elongation as compared to P91.
 - The miniature type SS-3 specimens have less material for deformation than regular specimens, partly resulting in the reduced elongation.

Nuclear Energy

Precipitate-strengthening

$$\sigma_i = 0.8 MGb / \lambda_i = 6.98 \times 10^{-5} \sqrt{r_i n_i}$$
 with M = 3.06, G = 83 GPa, b = 0.25 nm

Dislocation-strengthening

$$\sigma_d = 0.5 MGb \sqrt{\rho_d} = 3.17 \times 10^{-5} \sqrt{\rho_d}$$

	T-alloy	P91
Size of MX (r, nm)	5	20
Density of MX (n, m ⁻³)	10 ²²	10 ²¹
Density of dislocations ($ ho_{ m d}$, m ⁻²)	10 ¹⁴	10 ¹³
σ_{MX} , MPa	493	312
σ_{d} , MPa	317	100
$\sqrt{\sigma_{MX}^2 + \sigma_d^2}$, MPa	586	328

- MX precipitates exhibited greater contribution to strength than free dislocations.
- $\Delta\sigma_{calc.}$ = $\sigma_{T-alloy}$ σ_{P91} = 258 MPa, comparable to the room-temperature tensile results.

Nuclear Energy

Intermetallics-Strengthened Ferritic Alloys Z-Alloys

Aims:

- Develop in-situ composites composed of hard intermetallics and soft matrix;
- Discover a balanced intermetallics-matrix microstructure for superior properties.

Advantages:

- Simpler steelmaking processes than FM steels;
- Without α γ phase transformation during heating and cooling.

Intermetallics-Strengthened Ferritic Alloys Z-Alloys

- Z-alloys showed comparable or greater yield strength than P91, especially at temperatures above ~600°C.
 - Ductility (total elongation) of the Z-alloys can be adjusted by microstructural (composition) control of the alloys.

Intermetallics-Strengthened Ferritic Alloys Z-Alloys

Different from P91, Z-alloys are composed of eutectic network in a ferritic matrix, which are strongly dependent on alloy composition.

■ Primary phase need to be eliminated in the Z-alloys, which had brittle fracture, in contrast to the intermetallic particles favored ductile facture.

[L. Tan, et al., MMTA 46 (2015) 1188.]

Aging Effect on Strength and Ductility

Nuclear Energy

- Aging resulted in softening of FM steels (T-alloys) but strengthening of ferritic steels (Z-alloys).
- Composition adjustment can noticeably mitigate aging-induced softening in FM steels.
 - As compared to alloy TT1, Zr-alloying (alloy TTZ1) mitigated the aging-induced softening.

Creep Resistance of The New Alloys

Nuclear Energy

- T-alloys and Z-alloys showed comparable or greater creep rupture life than P91 at 650°C.
 - Generally, Z-alloys have greater creep life and strain than T-alloys.

Intermetallics-Strengthened Ferritic Alloys Z-Alloys

■ High densities of precipitates (10¹⁹ to 10²² m⁻³) formed in the Z-alloys during creep testing at 650°C, which enhanced creep resistance of the alloys but did not impair creep ductility.

- Creep at 650°C resulted in significant amount of dislocations and recovery of lath boundaries, but not much effect on precipitates.
- Recovery of lath boundaries is the primary mechanism resulting in softening of T-alloys, similar to general 9-12% Cr FM steels.

Ion-Irradiation Experiments

Nuclear Energy

- Radiation resistance of the alloys has being evaluated using proton ion irradiation. Heavy ion (Fe²⁺) irradiation experiments will be conducted.
 - Radiation-hardening, radiation-induced phase stability, swelling and segregation will be studied.

1.7 MV Tandem Accelerator Ion Beam @ UW-Madison

Proton Irradiation Experiments

Nuclear Energy

■ Twelve (12) different alloys were irradiated using protons to 0.1 and 1 dpa at 420°C and a dose rate of 3x10⁻⁶ dpa/s.

Fig. 1: Damage profile in Fe-10Cr irradiated with 2 MeV proton to 1 dpa.

Fig. 2: Picture of L-alloys before and after proton implantation.

Radiation Hardening Vickers Microhardness

■ Vickers micro-indentation with 25 gf (~1.9–2.6 µm = ~10% of Rp):

- L-alloys exhibited the greatest hardening (120%) after 1 dpa proton irradiation.
- Z-alloys had a large variation in hardening (~30-90%) after ~1 dpa, indicating a strong effect of solute elements on radiation hardening.
- T-alloys showed a small level of hardening (20-40%) after up to 2 dpa.
- As compared with Grade 91 (open circle) with ~40% hardening, the T-alloys and selective Z-alloys have lower hardening.

Radiation Hardening Nanoindentation

Hardness calculated by Olive-Pharr method:

 $H=P\downarrow max/A\downarrow c$

 $A\downarrow c = 24.5 h\downarrow c\downarrow 12$

 A_c - projected contact area; h_c - actual indentation depth; P_{max} - maximum load

Loading curve for irradiated T22 alloy (1 dpa)

Nano-hardness -- results

Nuclear Energy

Hardness vs contact depth for all irradiated steel samples (red) as compared to un-irradiated base material (blue).

Nuclear Energy

- T-alloys are most resistant to precipitate formation/phase changes due to proton irradiation, which results in the best hardness performance
- Z-alloys underwent some phase change during proton irradiation at various damage levels. Fe₂Zr hexagonal phase could be clearly identified, especially in the samples with a higher Zr content.

Microstructure of Z-Alloy Ferritic Matrix

Nuclear Energy

- BCC single phase $(d_{(110)} = 1.97 \text{ Å})$ accords with α -Fe.
- Dislocation lines with Burgers vectors of <111>/2 or <100>
- Long dislocation lines are mostly nucleated from matrix grain boundaries or phase interfaces
- Short dislocation threads (10~100 nm) are uniformly dispersed throughout the grain. They are identified as edge dislocations with Burgers vector of <100>

Diffraction patterns in [101] zone axis of α -Fe. (d) Bright-field TEM image of the grain boundary. Defects and/or strain field are noticed near the boundary. (Inset) diffraction pattern showing a small misorientation angle.

WBDF TEM image of the same grain at different **g** vectors. All images were recorded in (**g**, 3.1**g**) condition

Microstructure of Zr/W-rich Phase

- Aberration-corrected HRSTEM revealed high density of planar defects in the β-Fe₂Zr, a C36 type (P6₃/mmc) Laves phase (bcircle), and β'-Fe₂Zr, a C14 type (P6₃/mmc) Laves phase (c-circle).
- The stacking order of structural units agrees perfectly with structure models of faulted C36 and pristine C14 Laves phases
- Atomic ratio between Fe and Zr in these Laves phases is about 2.6 – chemically imperfect

Crystal structure of Zr/W-rich phase. (a)
Bright-field TEM image shows severely
faulted bands divided by defect-free bands.
(b, c) Selected area diffraction patterns
from circle b and c in (a), respectively.

- Two classes of alloys with Zr-alloying were developed, i.e., T-alloys (advanced FM steels) and Z-alloys (intermetallics-strengthened alloys), which showed promising results for superior high-temperature performance as compared with Grade 91.
 - Increased yield/tensile strength (by ~100–300 MPa from ~700 to 25°C)
 compensated with some decreases in ductility.
 - Improved creep resistance with significantly greater creep lives.
- Alloy composition exhibited noticeable effect on radiation hardening/ softening for both Z-alloys and T-alloys.