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Research Plan

Alloy Design (ORNL)

» Thermodynamic database development
+ Alloy design & fabrication

Testing & Characterization (ORNL)

» Mechanical testing
* Thermal aging experiment
» Microstructural characterization
» Microstructural simulation

Radiation Resistance (UW)

* Proton and heavy ion irradiations
» Microstructure and hardness
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B The escalating global clean-energy need drives higher operating
temperatures of power plants for improved thermal efficiency.

B Advanced materials with superior high-temperature strength can
effectively improve plant economics (reduced commodities, increased

thermal efficiency, longer lifetimes), safety marglns and design

flexibility. ‘ : B =—
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Ferritic Steels Have Outstanding
Properties for Engineering Design

Nuclear Energy

B Ferritic steels are important structural materials for nuclear reactors

— Advantages of FM steels over austenitic stainless steels

 High resistance to radiation-induced void swelling (e.q., ~10 times better at temperatures
above 300°C)

* High thermal conductivity and
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Concerns of The Current FM Steels
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B Higher Cr,;C, amount results in B Coarse Z-phase forms by consuming
greater creep rate. fineMX. “"v'rr—m—m™m™m™m—F————
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B Route I: Advanced FM steels

— Adjust alloy composition to reduce M,;C;, increase MX, and prevent Z-phase.
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B Route Il: Fully ferritic steels
— Prevent softening caused by the a - y phase transformation
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Past: Trial and Error Method; Time-consuming and expensi\b

Experiment Microstructure Property

Computational Tools
(Software + Database)
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Microstructural Simulation & Validation

Computational Kinetics
Thermodynamics -'*

¥ ¥

CALPHAD (CALculation of |1 | Nucleation, Growth and
PHAse Diagram) | Coarsening Theory

Science-based approaches

NEW thermodynamic property (G)

and Mobility (D) databases of
the Zr-containing Fe-base system
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Computational tools used in this study

Software Database
Computational Thermodynamic
thermodynamics property
 Matcalc 5.51 « OCTANT (in-house)
 Pandat 8.0 Mobility
Precipitation kinetics « MCFe (Non-encrypt)
* Matcalc 5.51

OCTANT: ORNL Computational Thermodynamics for Applied

Nuclear Technology
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Thermodynamic database
Fe-C-Cr-Mo-Nb-Ti-W-Zr

Binaries
c Cr Mo Nb Ti w zZr X-Y-C Ternaries
Fe | Fe-C | Fe-Cr | Fe-Mo | Fe-Nb | Fe-Ti | Fe-W | Fe-Zr Mo Nb Ti w Zr
Cc CCr | C-Mo | C-Nb | C-Ti C-W | C-Zr Cr-C | Cr-Mo-C | Cr-Nb-C | Cr-Ti-C | Cr-W-C | Cr-Zr-C
Cr Cr-Mo [ Cr-Nb | Cr-Ti | Cr-Ti | Cr-Zr Mo-C Mo-Nb-C | Mo-Ti-C | Mo-W-C | Mo-Zr-C
Mo Mo-Nb | Mo-Ti | Mo-W | Mo-Zr Nb-C Nb-Ti-C | Nb-W-C | Nb-Zr-C
Nb Nb-Ti | Nb-W | Nb-Zr Ti-C W-Ti-C | Ti-Zr-C
Ti Ti-W | Ti-Zr wW-C W-Zr-C
w W-Zr Zr
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S
S
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B Route I: Advanced FM steels

— 9Cr ferritic-martensitic steels (T alloys): Better phase stability and lower
radiation-induced DBTT shift than 12Cr FM steels.

B Router Il: Fully ferritic steels
— 15Cr ferritic stainless steels (L alloys): Better corrosion resistance than lower
Cr steels, negligible SCC issue, and without temperature-induced a — y phase
transformation in FM steels.
— Intermetallics-strengthened ferritic alloys (Z alloys): Brand-new ferritic alloys
without temperature-induced a — y phase transformation in FM steels.

B Reference alloy: Grade 91
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9Cr Ferritic-Martensitic Steels
T-Alloys

B Aims:
— Increase MX;
— Reduce M,;Cy;
— Eliminate Z-phase;
— Not much change to Laves phase.
B Advantages: The experience on steelmaking and welding of conventional
FM steels can be directly employed.
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9Cr Ferritic-Martensitic Steels

T-Alloys

B T alloys showed noticeable increases in yield strength (100-300 MPa)
compensated with reductions in total elongation as compared to P91.

— The miniature type SS-3 specimens have less material for deformation than regular

specimens, partly resulting in the reduced elongation.
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B Precipitate-strengthening
o, =08MGb/ A, =698x107/rn,
with M = 3.06, G = 83 GPa, b =0.25 nm
B Dislocation-strengthening
o, =05MGb.[p, =3.17x107/p,

T-alloy P91

Size of MX (r, nm) 5 20
Density of MX (n, m™3) 1022 | 10
Density of dislocations (o5, m?) | 10 | 103
oux, MPa 493 | 312
o4, MPa 317 | 100
oy +0., MPa 586 | 328

— MX precipitates exhibited greater contribution to strength than |
free dislocations.

— A0, = 01410y — Opg1 = 258 MPa, comparable to the room-
temperature tensile results.
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Z-Alloys

Nuclear Energy

B Aims:

— Develop in-situ composites composed of hard intermetallics and soft matrix;

— Discover a balanced intermetallics-matrix microstructure for superior properties.
B Advantages:

— Simpler steelmaking processes than FM steels;

— Without a — y phase transformation during heating and cooling.
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B Z-alloys showed comparable or greater yield strength than P91, especially
at temperatures above ~600°C.

— Ductility (total elongation) of the Z-alloys can be adjusted by microstructural
(composition) control of the alloys.
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ENERGY Intermetallics-Strengthened Ferritic Alloys
Z-Alloys
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B Different from P91, Z-alloys are composed of eutectic network in a ferritic
matrlx WhICh are strongly dependent on aIon comp03|t|on

B Primary phase need to be eliminated in the Z-alloys, which had brittle
fracture, in contrast to the intermetallic particles favored ductile facture.

[L. Tan, et al., MMTA 46 2015) 1188.]
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B Aging resulted in softening of FM steels (T-alloys) but strengthening of ferritic steels
(Z-alloys).
B Composition adjustment can noticeably mitigate aging-induced softening in FM
steels.
— As compared to alloy TT1, Zr-alloying (alloy TTZ1) mitigated the aging-induced softening.

140 140
Aged at 600°C for 5800 h Aged at 700°C for 5800 h
120 120
100 SYSH 100 “YS
E LR g “Ts
0 EL 0 EL
e e
s 60 5 60
(@) (@)
= 40 = 40
© ©
S 20 S 20
[7s] (7]
(= =
e 04 Tz TT1 T2 T3t~ 26 | 4 0+ Tzt 11 26
> >

- ol Ml .- ..

-60 -60




S U.S. DEPARTMENT OF

WENERGY

Nuclear Energy

Creep Resistance of The New Alloys

B T-alloys and Z-alloys showed comparable or greater creep rupture life than

Creep Stress (MPa)

P91 at 650°C.

— Generally, Z-alloys have greater creep life and strain than T-alloys.
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© ENERGY Intermetallics-Strengthened Ferritic Alloys
" Z-Alloys

Nuclear Energy

B High densities of precipitates (10'° to 1022 m-3) formed in the Z-alloys during
creep testing at 650°C, which enhanced creep resistance of the alloys but
did not impair creep ductility.
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B Creep at 650°C resulted in significant amount of dislocations and recovery
of lath boundaries, but not much effect on precipitates.

B Recovery of lath boundaries is the primary mechanism resulting in
softening of T-alloys, similar to general 9-12% Cr FM steels.
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B Radiation resistance of the alloys has being evaluated using proton ion
irradiation. Heavy ion (Fe?*) irradiation experiments will be conducted.

— Radiation-hardening, radiation-induced phase stability, swelling and segregation will be
studied.

1.7 MV Tandem Accelerator lon Beam @ UW-Madison
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Proton Irradiation Experiments

B Twelve (12) different alloys were irradiated using protons to 0.1 and 1 dpa at 420°C

and a dose rate of 3x10-¢ dpals.

v - v . v .
104 2 MeV protons into Fe-10Cr alloy (UW-M)
1 ¢=1.1x10" plem’

]E,=40eV

{ N, = 8.47x10” aticm’
1p=7.8a/cm’

Damage level [dpa]

—— Damage profile (K-P)

0.1 . . , , . . .
0 5 10 15 20
Depth [um]
Fig. 1: Damage profile in Fe-10Cr irradiated with 2
MeV proton to 1 dpa.
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Fig. 2: Picture of L-alloys before and after proton
implantation.
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Vickers Microhardness
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B Vickers micro-indentation with 25 gf (~1.9-2.6 pm = ~10% of Rp):

L-alloys exhibited the greatest hardening (120%) after 1 dpa proton irradiation.

Z-alloys had a large variation in hardening (~30-90%) after ~1 dpa, indicating a strong effect of
solute elements on radiation hardening.

T-alloys showed a small level of hardening (20-40%) after up to 2 dpa.

As compared with Grade 91 (open circle) with ~40% hardening, the T-alloys and selective Z-alloys
have lower hardening.
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Hardness calculated by Olive-Pharr method: ..
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Nano-hardness -- results
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XRD analysis
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« T-alloys are most resistant to precipitate formation/phase changes due to proton
irradiation, which results in the best hardness performance

« Z-alloys underwent some phase change during proton irradiation at various damage
levels. Fe,Zr hexagonal phase could be clearly identified, especially in the samples

with a higher Zr content.

2 MeV protons into T12, 420°C

2 MeV protons into Z3, 420°C
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BCC single phase (d o, = 1.97 A) accords with a-Fe.

Dislocation lines with Burgers vectors of <111>/2 or
<100>

Long dislocation lines are mostly nucleated from
matrix grain boundaries or phase interfaces

dispersed throughout the grain. They are identified as :
edge dislocations with Burgers vector of <100>

(020)*
-

Diffraction patterns in [101] zone axis of a-Fe. (d) Bright-
field TEM image of the grain boundary. Defects and/or
strain field are noticed near the boundary. (Inset) diffraction
pattern showing a small misorientation angle.

WBDF TEM image of the same grain at
different g vectors. All images were
recorded in (g, 3.1g) condition
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Microstructure of Zr/W-rich Phase
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V

» Aberration-corrected HRSTEM revealed
high density of planar defects in the B-Fe,Zr,
a C36 type (P6;/mmc) Laves phase (b-
circle), and 3’-Fe,Zr, a C14 type (P65/mmc)
Laves phase (c-circle).

» The stacking order of structural units agrees
perfectly with structure models of faulted
C36 and pristine C14 Laves phases

« Atomic ratio between Fe and Zr in these
Laves phases is about 2.6 — chemically
imperfect

{1090y .-~* + {tofoy, - *

.« *(0002) .

Crystal structure of Zr/W-rich phase. (a)
Bright-field TEM image shows severely
faulted bands divided by defect-free bands.
(b, c) Selected area diffraction patterns
from circle b and c in (a), respectively.
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« Two classes of alloys with Zr-alloying were developed, i.e., T-alloys
(advanced FM steels) and Z-alloys (intermetallics-strengthened alloys),
which showed promising results for superior high-temperature
performance as compared with Grade 91.

* Increased yield/tensile strength (by ~100-300 MPa from ~700 to 25°C)
compensated with some decreases in ductility.

« Improved creep resistance with significantly greater creep lives.

« Alloy composition exhibited noticeable effect on radiation hardening/
softening for both Z-alloys and T-alloys.



