

Environmentally Assisted Fatigue: Experiment & Mechanistic Modeling for Light Water Reactor Sustainability (LWRS) Program

Subh Mohanty, William Soppet, Saurin Majumdar, and Ken Natesan

Nuclear Engineering Division, Argonne National Laboratory

16th September 2015

OUTLINE

- □ Objective
- Baseline System/Component Level FE Model for Stress Analysis
- ☐ Fatigue Life Estimation Based on ASME/NUREG-6909 Approach
- □ Cyclic Plasticity Material Models: Theoretical Background
- 508 LAS Tensile Test & Material Model Results
- 508 LAS Fatigue Test & Material Model Results
- □ 316 SS 316 SS Weld Tensile Test & Material Model Results
- ☐ 316 SS 316 SS Weld Fatigue Test & Material Model Results
- Summary & Future Direction

Objective

Objective:

ANL is trying to develop an <u>experiment-mechanistic framework</u> for life estimation of reactor components under thermal-mechanical cycles and reactor environment.

- → Develop mechanistic finite element model that can be used for improving fatigue life prediction accuracy in reactor components.
- → Perform tensile & fatigue test of various reactor material for generation of basic material properties and validation of FE models.

Baseline System/Component Level FE Model for Stress Analysis

System/Component Level FE Model

Why system/Component level FE model?

- → To model multi-axial stress
- → To model system level displacement/strain due to thermal-mechanical cycle
- → To locate the fatigue hotspots and associated stress/strain history

Present FE model framework

Elastic material properties

Cyclic heat transfer analysis

System level FE model

Cyclic thermalstructural analysis Example
RPV/HL loading
boundary
condition →

System level FE model

FE mesh

Example Heat Transfer Analysis Results

Example Elastic Thermal-Structural Analysis Results

<u>Displacement (magnitude)</u> variation at the end of 1900 sec from stress analysis models with (a) pressure loading, (b) thermal loading, and (c) both pressure and thermal loading

<u>Maximum displacement</u> time histories at a typical ID node in HL (near SG nozzle)

Nodal displacement (magnitude) animation

Example Elastic Thermal-Structural Analysis Results (Contd.)

Maximum principal stress distribution at the end of 1900 sec (at peak temp & pressure) from stress analysis models with (a) pressure loading, (b) thermal loading, and (c) both pressure and thermal loading

Maximum/minimum principal stress time histories at a typical ID element in the HL elbow from stress analysis models with a) pressure loading, b) thermal loading, c) and both pressure and thermal loading

Von Mises stress animation

Fatigue Life Estimation Based on ASME/NUREG-6909 Approach

Example Estimated Fatigue Life

ASME/NUREG-6909 approach for fatigue life

$$N_{PWR} = \frac{N_{air}}{F_{en}}$$

$$F_{en} = \exp(-\theta' O' \dot{\epsilon}')$$

ASME in-air stress~life curve

In-air and environmental fatigue lives estimated under different loading conditions for cold leg

Cold leg (based on elbow stress/strain)	Only pressure	Only temperature	Both temperature and pressure
Max. stress amplitude (MPa) (with elastic modulus correction)	27.685	180.87	171.18
Max. strain amplitude (%)	0.01662	0.11086	0.10481
Max. strain rate (%/s)	8.0102e-06	5.3429e-05	5.0512e-05
In-air fatigue life	>106	1.1x10 ⁵	1.9x10 ⁵
F_{en}	1	7.8124	7.8124
PWR environ. fatigue life	>106	14,080	24,320

Cyclic Plasticity Material Models: Theoretical Background

Theoretical background: conventional FE model

Theoretical background: evolutionary material model

Why evolutionary material model ?

→ Material harden/soften as function of accumulated plastic strain or time leading to yield surface expansion/contraction & translation in stress space.

Example: Stress-strain under cyclic loading

Example cyclic hardening under PWR water (316 SS)

How to model this through FE: Should we provide thousands of stress-strain curve as input to FE code?

Evolutionary material model (Contd.)

Evolutionary material model (Contd.)

Evolutionary von-mises yield criteria for multi-axial FE modeling

<u>Inter-cycle</u> cyclic yield stress shift (isotropic hardening model)

→ Can directly be modeled through feeding cyclic yield stress ~ accumulated plastic strain to FE code

<u>Within the cycle</u> stress-strain model (kinematic hardening model)

$$d\alpha_i^j = \frac{2}{3}C1_i^{av}(p)d\epsilon^{pl} \leftarrow Linear model$$

$$d\alpha_{i}^{j} = \frac{2}{3}C1_{i}^{av}(p)d\epsilon^{pl} - \gamma 1_{i}^{av}(p)\alpha_{i}^{j}\overline{p} \leftarrow Nonlinear \mod l$$

Material, Specimen & Test Setup

Types of material being tested

Reactor coolant system pipe material

Base/weld material being tested

- 1. 316SS base
- 2. 508LAS base
- 3. 316SS-316SS pure weld
- 4. 508LAS-316SS filler weld
- 5. 508LAS-316SS butter weld

Example 316SS-316SS pure weld specimen

Test Setup

In-air test frame

Example in-air test thermocouple readings during heat up procedures

Environmental test frame with PWR water loop and autoclave

508 LAS <u>Base & HAZ Metal Tensile</u> Test & Material Model Results

508 LAS <u>Tensile Test</u> & Material Model Results

Example thermal strain during stress-free heat up

508 LAS base & HAZ metal (Engineering) stress-strain curve

508 LAS Tensile Test Material Model Results (contd.)

(HAZ metal, 300 °C tensile test: nonlinear kinematic hardening model with 0.2% offset yield stress)

Kinematic hardening model type =Nonlinear 8000 7000 6000 5000 C_1 (MPa) 4000 2000 **Parameters** 1000 5 10 15 20 optimization Iteration no. Kinematic hardening model type =Nonlinear iteration no. -50 -100 -150 -200

w.r.t

Model estimated stress-strain curve w.r.t experiment stress-strain curve

Iteration no.

10

12

14

16

508 LAS <u>Base Metal Fatigue</u> Test & Material Model Results

508 LAS Base Metal Fatique Test & Material Model Results

Cyclic stress hardening/softening under different conditions

→ requires time-dependent kinematic and isotropic hardening/softening modeling

508 LAS Base Metal Fatigue Test & Material Model Results (Contd.)

(Example results : 300 °C PWR water fatigue test)

Example equivalent stress-strain curve for first 50 cycles

Evolution of 0.05% yield stress

508 LAS Base Metal Fatigue Test & Material Model Results (Contd.)

Evolution of C1 under different conditions

Evolution of y1 under different conditions

316 SS – 316 SS <u>Weld Tensile</u> Test & Material Model Results

316 SS – 316 SS Weld <u>Tensile Test</u> & Material Model Results

Example thermal strain during stress-free heat up procedure

316 SS – 316 SS Weld (Engineering) stress-strain curve

316 SS – 316 SS Weld Tensile Test Material Model Results (contd.)

(316 SS – 316 SS Weld, 300 °C tensile test nonlinear kinematic hardening model results with 0.2% offset yield stress)

Kinematic hardening model type =Nonlinear

3000

1000

1000

-3000

-4000

-5000

2 4 6 8 10 12 14

Iteration no.

Kinematic hardening model type =Nonlinear

50
45
40
35
- 30
25
20
15
10
0
2
4
6
8
10
12
14

Model estimated stress-strain curve w.r.t experiment stress-strain curve (for T05 tensile test data)

Iteration no.

Parameters

w.r.t

optimization

iteration no.

316 SS – 316 SS <u>Weld Fatigue</u> Test & Material Model Results

Fatigue lives under different conditions

Cyclic stress hardening/softening under different conditions

→ requires time-dependent kinematic and isotropic hardening/softening modeling

(Example case: 300 °C PWR water fatigue test results)

Example equivalent stress-strain curve for first 50 cycles

Evolution of 0.05% yield stress

Substantial cyclic reduction in yield stress

Fatigue cycles

(Example case: 300 °C PWR water fatigue test results-contd.)

Evolution of nonlinear kinematic hard. Parameter C1

Evolution of nonlinear kinematic hard. Parameter γ1

0.05% offset yield stress evolution under different conditions

Elastic modulus evolution under different conditions

Evolution of nonlinear kinematic hard. parameter C1 under different conditions

Evolution of nonlinear kinematic hard. parameter γ1 under different conditions

Summary

Summary

During FY-15 following works performed:

- → A <u>system level baseline FE model</u> developed for <u>cyclic thermal-mechanical stress analysis</u> of a PWR type reactor.
- → Tensile & fatigue test conducted under different conditions using <u>508 LAS base metal</u> specimens.
- → Tensile & fatigue test conducted under different conditions using 316 SS-316 SS weld metal specimens
- → Based on the tensile and fatigue test data of 508 LAS & 316 SS-316 SS weld specimens various material properties (both tensile test based time-independent & fatigue test based time-dependent properties) estimated.

Future Direction

- → Use of estimated material parameters for component & system level FE model.
- → Tensile, fatigue test & material model for other material (e.g. 508LAS-316SS dissimilar metal weld).
- → Fatigue test under <u>variable/random load</u> and material modelling.
- → Study the effect of <u>stress versus strain control</u> test on material model results.
- → Fatigue test and material modeling to study the effect of different hold time under PWR water.

Thank You

