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Objective:  
 

ANL is  trying to develop an experiment-mechanistic framework for life 

estimation of reactor components under thermal-mechanical cycles and 

reactor environment.  

 

 

Develop mechanistic finite element model that can be used for improving 

fatigue life prediction accuracy in reactor components. 

 

 Perform tensile & fatigue test of various reactor material for generation of 

basic material properties and validation of FE models.  
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Baseline System/Component Level FE Model for 

Stress Analysis 
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System/Component Level FE Model 
 Why system/Component level  FE model? 
 

 To model multi-axial stress 
 

 To model system level  displacement/strain 

due to thermal-mechanical cycle 
 

 To locate the fatigue hotspots and 

associated stress/strain history 

 Present FE model 

framework 

System level 

FE model 

Elastic material 

properties 

Cyclic heat 

transfer analysis 

Cyclic thermal-

structural analysis 

 System level FE model 

  FE mesh 
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Example Heat Transfer Analysis Results  
ID surface temperature distribution at the 

end of 1900 sec 

OD surface temperature distribution at the 

end of 1900 sec 
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Example Elastic Thermal-Structural Analysis 

Results 

Displacement (magnitude) variation at the end of 

1900 sec  from stress analysis models with (a) 

pressure loading, (b) thermal loading, and (c) both 

pressure and thermal loading 
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Nodal displacement (magnitude) animation 
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Example Elastic Thermal-Structural Analysis 

Results (Contd.)  

Maximum principal stress distribution at the end of 

1900 sec  (at peak temp & pressure)  from stress 

analysis models with (a) pressure loading, (b) thermal 

loading, and (c) both pressure and thermal loading 
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Von Mises stress animation 
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Fatigue Life Estimation Based on 

ASME/NUREG-6909 Approach 
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Example Estimated Fatigue Life 

 ASME/NUREG-6909 approach for 

fatigue life 

𝑁𝑃𝑊𝑅 =
𝑁𝑎𝑖𝑟

𝐹𝑒𝑛
  

𝐹𝑒𝑛 = exp⁡(−𝜃′𝑂′𝜖 ′)  
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 ASME in-air stress~life curve 

Cold leg 

(based on elbow stress/strain) 

Only 
pressure 

Only 
temperature 

Both temperature      
and pressure 

Max. stress amplitude (MPa) 

(with elastic modulus correction) 

27.685 180.87 171.18 

Max. strain amplitude (%) 0.01662 0.11086 0.10481 

Max. strain rate (%/s) 8.0102e-06 5.3429e-05 5.0512e-05 

In-air fatigue life >106 1.1x105 1.9x105 

𝐹𝑒𝑛 1 7.8124 7.8124 

PWR environ. fatigue life >106 14,080 24,320 

 In-air and 

environmental fatigue 

lives estimated under 

different loading 

conditions for cold leg 
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Cyclic Plasticity Material Models: Theoretical 

Background 

14 
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Theoretical background: conventional FE model 

FE model 

Elastic Analysis 

Material properties: 

a) Elastic modulus 

b) Poisson’s ratio 

 

Monotonic tensile 

test data 

 

FE model 

Elastic-plastic Analysis 

Material properties: 

a) Elastic modulus 

b) Poisson’s ratio 

c) Time-independent  

          Yield stress  

          Hardening properties 

Monotonic tensile test data  

or 

Cyclic test ½ life data 
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Theoretical background: evolutionary material model 

Why evolutionary material model  ? 
 

 

 Material harden/soften  as function of  accumulated plastic strain or time leading to yield 

surface expansion/contraction & translation in stress space. 

16 

Example: Stress-strain under cyclic loading 
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Evolutionary material model (Contd.) 
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Evolutionary material model (Contd.) 
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Evolutionary von-mises yield criteria for multi-axial FE modeling 
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Material, Specimen & Test Setup 

19 
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Types of material being tested 

Base/weld material  

being tested 
 

1. 316SS base 

2. 508LAS base 

3. 316SS-316SS pure weld 

4. 508LAS-316SS filler weld 

5. 508LAS-316SS butter 

weld 

Reactor coolant system pipe material 

Example 316SS-316SS 

pure weld specimen 
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Test Setup 

In-air test frame Environmental test frame with 

PWR water loop and autoclave 

21 

Example in-air test 

thermocouple 

readings during 

heat up 

procedures 

Example water 

pressure during a 

PWR  water test 
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508 LAS Base & HAZ Metal Tensile Test & Material 

Model Results  

22 
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508 LAS base & HAZ metal (Engineering) 

stress-strain curve 

Example thermal strain during stress-free heat up 

procedure 
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Model estimated stress-strain curve w.r.t 

experiment stress-strain curve 
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508 LAS Tensile Test Material Model Results (contd.) 
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508 LAS Base Metal Fatigue Test & Material Model 

Results 

25 
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Cyclic stress hardening/softening under 

different conditions  
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508 LAS Base Metal Fatigue Test & Material Model Results 

Fatigue lives under different conditions 

(approx. 0.1%/S strain rate) 
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508 LAS Base Metal Fatigue Test & Material Model Results (Contd.) 

(Example results : 300 oC PWR water fatigue test) 

Example equivalent stress-strain curve for 

first 50 cycles 
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508 LAS Base Metal Fatigue Test & Material Model Results (Contd.) 

Evolution of C1 under different conditions 
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316 SS – 316 SS  Weld Tensile Test & Material Model 

Results 

29 
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316 SS – 316 SS  Weld (Engineering) 

stress-strain curve 

Example thermal strain during stress-free heat up 

procedure 
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316 SS – 316 SS  Weld Tensile Test & Material Model Results  
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Model estimated stress-strain curve w.r.t 

experiment stress-strain curve (for T05 

tensile test data) 
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316 SS – 316 SS  Weld Tensile Test Material Model Results (contd.) 

(316 SS – 316 SS  Weld,  300 oC  tensile test nonlinear kinematic hardening 

model results with 0.2% offset yield stress) 
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316 SS – 316 SS  Weld Fatigue Test & Material 

Model Results  

32 
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Cyclic stress hardening/softening under 

different conditions  
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316 SS – 316 SS Weld Metal Fatigue Test & Material Model Results 

Fatigue lives under different conditions 
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316 SS – 316 SS Weld Metal Fatigue Test & Material Model Results (Contd.) 

 

(Example case: 300 oC PWR water fatigue test results) 

Example equivalent stress-strain curve for 

first 50 cycles 

Evolution of 0.05% yield stress  
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316 SS – 316 SS Weld Metal Fatigue Test & Material Model Results (Contd.) 

 

(Example case: 300 oC PWR water fatigue test results-contd.) 

Evolution of nonlinear kinematic hard. 
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316 SS – 316 SS Weld Metal Fatigue Test & Material Model Results (Contd.) 

0.05% offset yield stress evolution under 

different conditions Elastic modulus evolution under different 

conditions 
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316 SS – 316 SS Weld Metal Fatigue Test & Material Model Results (Contd.) 

Evolution of nonlinear kinematic hard. 

parameter C1 under different conditions Evolution of nonlinear kinematic hard. 

parameter γ1 under different conditions 
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Summary 
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Summary 

During FY-15 following works performed: 

 

 A system level baseline FE model developed for cyclic thermal-mechanical stress analysis of a 

PWR type reactor. 

 

 Tensile & fatigue test conducted under different conditions using 508 LAS base metal 

specimens. 

 

 Tensile & fatigue test conducted under different conditions using 316 SS-316 SS weld metal 

specimens 

 

 Based on the tensile and fatigue test data of 508 LAS & 316 SS-316 SS weld specimens various 

material properties (both tensile test based time-independent & fatigue test based time-

dependent properties) estimated. 

 
Future Direction 

 Use of estimated material parameters for component & system  level FE model . 

 

 Tensile, fatigue test & material model for other material (e.g. 508LAS-316SS dissimilar metal weld). 

 

 Fatigue test under variable/random load and material modelling. 

 

 Study the effect of stress versus  strain control test on material model results. 

 

 Fatigue test and material modeling to study the effect of different hold time under PWR water. 
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Thank You 


