FY2013 NEET Award Developing Microstructure-Property Correlation in Reactor Materials using in situ High-Energy X-rays

PIs:
Meimei Li (ANL), Jonathan Almer (ANL), Yong Yang (U. Florida), Lizhen Tan (ORNL)
Contributors:
Erika Benda, Yiren Chen, Peter Kenesei, Ali Mashayekhi, Jun-Sang Park, Hemant Sharma (ANL), B.K. Kim and K.G. Field (ORNL)

Postdoc and student:
Xuan Zhang (Postdoc, ANL), Chi Xu (PhD student, U. Florida)

Special thanks to NSUF and Prof. Stubbins (U. Illinois) for providing irradiated specimens

FY2015 DOE NE NEET Webinar
September 16, 2015

Motivation

Microstructure - Property Correlation

Microstructure

(dislocation loops, extended dislocation structure, voids,

He bubbles, phase transformation, etc.)

Mechanical Properties

(low-temperature embrittlement, irradiation creep, high-temperature embrittlement, irradiationassisted stress corrosion cracking)

- Traditionally, microstructure and mechanical properties are measured separately;
- Need new capability that measures microstructure and properties simultaneously;
- Existing techniques, e.g. in situ straining with electron microscopy of small-scale specimens
- New capability: in situ straining of lab-scale specimens with multiple probes

In situ Straining with High-Energy X-rays and Multiple Probes

 - Beamline 1-ID at Advanced Photon SourceHigh-energy, high-brilliance X-rays:
SAXS detector

- HR detector
- Filters \& stop
- Deep penetration
- mm-sized specimens
- Suite of sample environments/stages
- In situ, real-time studies

Lab-scale mechanical test

Very far-field detectors

- 3 HR detectors
- Trans-rotate for high q-coverage

Far-field detectors

- 4 GE $2 \times 2 \mathrm{k}$ detectors
- @1m: qmax~25 1/A
- Center-hole (SAXS)
- Near field-HEDM detector
- Tomography
- Conical slit
- Lasers

Wide-angle X-Ray Scattering (WAXS)

(a)

- Identify phases
- Measure elastic moduli for individual (hkl) planes for each phase and temperature dependence
- Measure lattice strain evolution, load partitioning among different phases during deformation to quantify strengthening effects
- Measure dislocation density and subgrain structure evolution as a function of stress/strain to understand deformation mechanisms

Wang, et al. Acta Mat. 62 (2014) 239; Li, et al. Acta Mat. 76 (2014) 381.

Small-angle X-ray Scattering (SAXS)

Measure void formation and evolution

Wang, et al. JNM 440 (2013) 81.

High Energy Diffraction Microscopy (HEDM)

- Three-dimensional, grain-scale, non-destructive characterization of microstructural and micromechanical response of individual grains within the bulk of a polycrystalline specimen.

- Thousands of grains in mm-size samples
- Near-field HEDM: grain shape, orientation
- Far-field HEDM: strain, orientation

$3 \mathrm{e}+02 \quad 3.5 \mathrm{e}+02 \quad 3.9 \mathrm{e}+02 \quad 4.4 \mathrm{e}+02 \quad 4.8 \mathrm{e}+02 \quad 5.3 \mathrm{e}+02 \quad 5.7 \mathrm{e}+02 \quad 6.2 \mathrm{e}+02 \quad 6.6 \mathrm{e}+02 \quad 7.1 \mathrm{e}+02 \quad 7.5 \mathrm{e}+02 \quad 8 \mathrm{e}+02$
FEM simulation of von Mises stress in a Ti alloy sample loaded to 500 MPa . (Ludwig, et al, MSE A524 (2009))

X-ray Tomography

- Nondestructive technique for visualizing internal microstructure within a material
- Provide 3D images of the internal structure (pores, voids, cracks, etc.) in a material

Absorption Tomography provides information due to electron density, revealing presence of voids, cracks, etc. (by AFRL, unpulished)

X-ray tomography of thermally-fatigue GlidCop specimen measured at APS beamline 1-ID.
(A. Khounsary et al. J. Phys 425 (2013) 212015)

In situ Characterization of F-M G92 Steel during Tensile Deformation by WAXS/SAXS/Radiography

Engineering Strain (\%)

Molecular Dynamics (MD) simulations showed void evolution during tensile deformation

Diffraction peak shifts revealed load partitioning among phases during deformation

Diffraction peak

 broadening revealed dislocation evolution during deformationSAXS captured void formation and evolution during necking

Project Goal -

In situ Characterization under Thermal-Mechanical Loading with High-Energy X-rays of Neutron-Irradiated Specimens

Nanoscale: WAXS and SAXS
(Schuren, et al 2014, pre-publication)

Macroscale: stress-strain behavior

In situ X-ray Radiated Materials Straining/Annealing (iRadMat) Apparatus

Unique x-ray sample environment

- Internal radiation shielding for activated samples
- Temperature: $<1000^{\circ} \mathrm{C}$
- Vacuum: 1×10^{-5} Torr
- Tension, creep, fatigue loading
- In-grip rotation for tomography \& diffraction microscopy

iRadMat

Furnace

 containment

Vacuum furnace with Integrated Radiation Shielding

Challenge - Handling Activated Specimen

On-site Radiological Facility - Irradiated Materials Lab (IML)

Specimen installation and encapsulation at Irradiated Materials Laboratory (IML) in Bldg. 212, ANL

Pack into a shielded containment and survey.

Transfer between IML and APS

Advanced Photon Source (APS)
Unpacking and loading at 1-ID beamline

Encapsulation for Activated Tensile Specimen

RT tensile test of an irradiated specimen

For low-activity specimens

For high-activity specimens - additional local shielding

In situ Straining of Neutron-Irradiated Fe-9Cr Alloy

Samples	Non- irradiated	Irradiated	Irradiated
$\mathrm{T}_{\text {irr }}\left({ }^{\circ} \mathrm{C}\right)$	N / A	300	450
dose (dpa)	N / A	0.01	0.01

- EBSD mapping of control sample shows an average grain size of $180 \mu \mathrm{~m}$.
- TEM characterization of defect structures shows:
- no visible irr-induced defects in $300^{\circ} \mathrm{C}$ 0.01dpa sample;

- nano-sized loops in $450^{\circ} \mathrm{C}$-0.01dpa specimen sample.

U. Illinois Irradiation Experiment at ATR

$450^{\circ} \mathrm{C}, 0.01 \mathrm{dpa}$

Stress-Strain Behavior of Neutron-Irradiated Fe-9Cr

- Stress-strain curves recorded during in-situ X-ray measurement

Work-hardening:

$$
\begin{aligned}
& \sigma=76.82+63.02 \varepsilon^{0.380} \\
& \sigma=128.43+100.20 \varepsilon^{0.254} \\
& \sigma=214.86+88.06 \varepsilon^{0.255}
\end{aligned}
$$

Wide-angle X-ray Scattering during Deformation

$300^{\circ} \mathrm{C}$ irr, as received

X-ray energy: $\mathrm{E}=122 \mathrm{keV}$
X-ray beam size $=0.2 \times 0.2 \mathrm{~mm}^{2}$
$300^{\circ} \mathrm{C}$ irr, after deformation

Strain rate $\sim 1-3 \times 10^{-5} / \mathrm{sec}$
-> duration for 1 test: ~5h
1 data point averages over 30 measurements, covering $0.5 \mathrm{~mm}^{3}$ volume of about 100 grains.

Lattice Strain Evolution during Tensile Deformation

Peak Broadening during Tensile Deformation

- Peak broadening data are being analyzed to obtain dislocation density and dislocation structure as a function of strain.
- Small-angle X-ray scattering data are to be analyzed.

Ex situ 3D Characterization of Irradiated Specimens

Far-field High-Energy Diffraction Microscopy (ff-HEDM)

X-ray Energy: E=70keV
Beam size $=2 \times 0.2 \mathrm{~mm}^{2}$
4 layers measured

Specimen holder for encapsulated tensile specimen (left) and for encapsulated TEM specimen (right)

ff-HEDM on Deformed, $300^{\circ} \mathrm{C} / 0.01$ dpa n -irradiated

 Fe-9Cr Alloy

ff-HEDM of Neutron-Irradiated HT-UPS Austenitic Steel

Outlook - in situ 4D Characterization

- Integrate in situ straining/annealing capability with 3D characterization techniques for 4D (time- and spatial-resolved) characterization of neutron-irradiated specimens under thermal-mechanical loading.

Special Thanks to APS Beamline 1-ID

