Giving Wastewater a Boost with Breakthroughs in Secondary Treatment

Brent Giles Research Director

About Lux Research

- Helps clients find new business opportunities from emerging technologies in physical and life sciences
- Offers ongoing technology and market intelligence, as well as market data and consulting services
- Over 250 clients on six continents multinational corporations, investors, governments, and SMEs
- Global reach, with offices in Boston, New York, Amsterdam, Singapore, Shanghai, and Tokyo
- Combines deep technical expertise with business analysis to support strategic decisions

More at <u>www.luxresearchinc.com</u>

Coverage areas

- Advanced Materials
- Agro Innovation
- Alternative Fuels
- Autonomous Systems 2.0
- Bio-based Materials & Chemicals
- Bioelectronics
- Efficient Building Systems
- Energy Electronics
- Energy Storage
- Exploration and Production
- Food and Nutrition
- Printed, Flexible, and Organic Electronics
- Solar
- Sustainable Building Materials
- Water

Contents

- > Problems with existing wastewater treatment
- > A picture of the "average" activated sludge plant
- > Six innovative technologies go head to head

Stickney Water Reclamation Plant, Chicago

Contents

- > Problems with existing wastewater treatment
- > A picture of the "average" activated sludge plant
- > Six innovative technologies go head to head

Stickney Water Reclamation Plant, Chicago

Wastewater treatment gobbles energy and produces large volumes of sludge

> The dominant process for treating the world's wastewater, activated sludge, faces three major issues:

High energy consumption

Mountains of waste sludge

The squeeze for space

Anaerobic digestion reduces, but doesn't eliminate waste sludge

- > Does not scale down well
- Many facilities need to combine sludge with other waste streams
- Reduces sludge volume by about 40%, but you still have to do something with the remaining stabilized biosolids

Many U.S. wastewater plants will look to expand capacity due to population and climate pressures

Many U.S. wastewater plants will look to expand capacity due to population and climate pressures

In the United States, a few mega-systems treat a large portion of the water

In the United States, a few mega-systems treat a large portion of the water

Up to 37,800

m3/day

Up to 378,000

m3/day

100,000 m³/day Total

0

Up to 378

m₃/day

Up to 3780

m3/day

Contents

- > Problems with existing wastewater treatment
- > A picture of the "average" activated sludge plant
- > Six innovative technologies go head to head

Stickney Water Reclamation Plant, Chicago

The "average" wastewater treatment plant

The "typical" U.S. 100,000 m³/day plant

> Wastewater volume: 100,000 m³/day

> Population: 180,000 people

> Energy consumption: o.4 kWh/m³

> Staff: **46**

Sludge production: 3150 tons/year dry, or 12,600 tons/year at 25% solids

> Minimum footprint: 12.5 acres

> Annual operating cost: **\$4 million/year**

Operating cost breakdown for wastewater treatment

Energy breakdown for wastewater treatment

Contents

- > Problems with existing wastewater treatment
- > A picture of the "average" activated sludge plant
- > Six innovative technologies go head to head

Stickney Water Reclamation Plant, Chicago

How we compared these technologies

	Based in	Founded	Revenue	Employ -ees	Î		*
	Australia	2009	\$2 million	12			
aquace Second	Australia	1996	\$4 million	12			
Baswood	U.S.	2004	\$7 million	20			
Prefcy Bio-Energy Systems	Israel	2007	Pre- revenue	25			
aquarius TECHNOLOGIES INC	U.S.	2006	\$10 million	12			
OXYMEM	Ireland	2013	\$500,000	27			

1 BioGill

- > Ceramic "gill" material supports biofilm
- Gills create passive aeration and allow biofilm to slough off due to gravity

1 BioGill

Largest existing installation (m³/day)

AquaCell

- Membrane bioreactors provide high-quality effluent
- Focus on graywater and blackwater recycling systems within a building or campus

• AquaCell

Largest existing installation (m³/day)

3 Baswood

- > Separates secondary treatment into three reactors
- > "Dry cycle" reduces sludge volume and removes old biomass

Baswood

Baswood

Largest existing installation (m³/day)

Emefcy Sabre (Spiral Aerobic Biofilm Reactor)

- > Another take on passive aeration
- > Spiral shape with biofilm on inside
- > Incorporates a backwash cycle

Emefcy Sabre (Spiral Aerobic Biofilm Reactor)

Aquarius Technologies

- > Incorporates many different zones with slightly different conditions
- > 18 to 24 hours of aeration

<u>aquariu</u>

Aquarius Technologies

0

6 OxyMem

O,/AIr

- Membrane Aerated Biofilm Reactor (MABR) provides air through the inside of hollow fiber membrane
- Monitors biofilm growth by nitrogen production
- Developing easyretrofit solution

6 OxyMem

Largest existing installation (m³/day)

The next generation of secondary wastewater treatment

Most promising current technologies

Lowest electricity consumption

Least sludge

Smallest staff

Most promising current technologies

Lowest electricity consumption

Least sludge

Smallest staff

Most promising current technologies

Lowest electricity consumption

Least sludge

Smallest staff

Over \$1 million in operating cost savings from staff reduction, sludge reduction, and energy savings

Questions?

Brent Giles Research Director

Brent.giles@luxresearchinc.com 917.484.4878

