

Advanced Small Modular Reactor Research and Development– Instrumentation, Control, and Human-Machine Interface (ICHMI)

Overview

AdvSMR ICHMI FY14 Status and

Transition to Advanced Reactor Technologies Program

Richard Wood

Oak Ridge National Laboratory

Presented during

DOE Combined Review Meeting for I&C Research U.S. Department of Energy – Webinar September 16, 2014

ICHMI Technical Area Focus is on Achieving Goals and Resolving Challenges for Advanced Reactors

- DOE-NE R&D Objective #2 [Develop improvements in the affordability of new reactors...] establishes the primary goal for ART ICHMI research
 - ICHMI is the equivalent of the central nervous system for nuclear power plant and contributes significantly to
 - Achieving cost-competitiveness
 - Ensuring safety
 - Enabling licensability for operation
- Advanced Reactor Concepts TRP Report lists some ICHMIrelated technical issues requiring resolution to establish an Advanced Reactor Licensing Framework
 - Multi-module control
 - Staffing of smaller units or modules
- ICHMI R&D specifically targets challenges associated with unique operational and process characteristics of advanced reactor concepts

ICHMI R&D Priorities are being Adapted for Transition from AdvSMR to ART

Nuclear Energy

Research priorities

- Address technology gaps (e.g., sensors)
- Resolve key technical and licensing issues

Key research targets

- Environment, architecture, and dependability for critical measurements and in-vessel monitoring
- High-fidelity condition determination and incipient failure detection to support extended operation
- Flexible, robust automation for off-normal conditions and multi-unit operation
- Reduced human resource demands for operations and maintenance

ICHMI R&D Priorities are being Adapted for Transition from AdvSMR to ART

Nuclear Energy

- Research priorities
 - Address technology gaps (e.g., sensors)
 - Resolve key technical and licensing issues

Sensors

O&M Efficiency/Staffing

Automation

Diagnostics/Prognostics

↑

↑

↑

- Key research targets [Observability and Operability]
 - Environment, architecture, and dependability for critical measurements and in-vessel monitoring
 - High-fidelity condition determination and incipient failure detection to support extended operation
 - Flexible, robust automation for non-traditional operation (multi-unit, integrated energy systems), including off-normal conditions and events
 - Optimized human resource utilization for safe and cost-effective operations and maintenance

There are 10 I&C Projects Underway in FY14 [AdvSMR & ARC]

- Johnson Noise Thermometry for Drift-Free Temperature Measurements
- Concepts of Operation for Multi-Modular SMR Plants
- Framework for Human-Automation Collaboration
- Supervisory Control of Multi-Modular SMR Plants
- Impact of Active Control on Passive Safety Characteristics of Advanced SMRs
- Prototypic Prognostic Technique Demonstration for SMR Passive Components
- Enhanced Risk Monitors with Integrated Equipment Condition Assessment
- Modeling Tools for Dynamic Behavior Simulations of SMRs
- Waveguide Transducer Assembly for Under-Sodium Viewing
- Submerged Transducer Assembly for Under-Sodium Viewing

Technology Context for AdvSMR ICHMI Challenge

Interrelated Projects Address Key Parts of ICHMI Challenge

Overview and Status Presentations To Follow

- Johnson Noise Thermometry for Drift-Free Temperature Measurements
- Concepts of Operation for Multi-Modular SMR Plants
- Framework for Human-Automation Collaboration
- Supervisory Control of Multi-Modular SMR Plants
- Impact of Active Control on Passive Safety Characteristics of Advanced SMRs
- Prototypic Prognostic Technique Demonstration for SMR Passive Components
- Enhanced Risk Monitors with Integrated Equipment Condition Assessment
- Modeling Tools for Dynamic Behavior Simulations of SMRs
- Waveguide Transducer Assembly for Under-Sodium Viewing
- Submerged Transducer Assembly for Under-Sodium Viewing

Work Package SR-140R130106 – Johnson Noise Thermometry for Drift-Free Temperature Measurements

Nuclear Energy

Task Relevancy

- Instrumentation naturally drifts from calibration over time and each channel must be periodically visited, inspected, and recalibrated.
 - Drift in the primary system temperature measurements must be addressed in operating margin and by periodic maintenance
 - Decreasing the temperature measurement uncertainty/ calibration demands can directly increase the plant revenue

Technical Approach/Accomplishments/Results

- Develop Johnson Noise Thermometry system prototype
- Self-calibration of traditional RTD measurement accomplished based on Johnson noise measurements over time
- Innovative noise rejection algorithms devised and under test
- Field test underway at HFIR with additional field tests planned
- Demonstration of self-calibration capability is proceeding

JNT Prototype

Expected Deliverable & Schedule

- JNT prototype developed and laboratory tested [FY13]
- Environmental effects (EMI/RFI) testing conducted [FY13-14]
- Field demonstration scheduled at multiple venues [FY14-15]
- Self-calibration capability demonstration [FY15]
- Technology transfer planned for commercialization

Work Package SR-140R130107 – Supervisory Control of Multi-modular SMR Plants

Nuclear Energy

Task Relevancy

- Adoption of a supervisory control system concept in advanced nuclear systems will support their economic competitiveness. Moreover, they will facilitate integration of these systems within hybrid energy clusters
 - Commercial control systems are able to perform tasks from a limited set of automation rules. However, they fail to execute complex tasks that require situation analysis and decision-making
 - Supervisory control concept, as developed by ORNL, advances the state of the art by incorporating decision-making into a hierarchical control system architecture

Supervisory Actions for Event

Technical Approach, Accomplishments/Results

- Supervisory control system is conceptualized as a nonsafety system that is completely isolated from reactor protection system
 - Trip setpoints define the control domain
 - This approach makes the licensing case easier
- Decision-making is achieved in a two-tier approach
 - Probabilistic portion uses PRA in real time
 - generates available alternative scenarios
 - · provides metric for ranking
 - Deterministic portion uses utility theory
 - applies deterministic rules
 - Incorporates other features, such as anticipated component stress, into decision-making

Expected Deliverable & Schedule

- Devise supervisory control requirements and develop functional architecture [FY13]
- Implement the first-of-a-kind probabilistic decision-making capability for supervisory control [FY14]
- Implement the first-of-a-kind deterministic decision-making capability for supervisory control [FY15]
- Develop and demonstrate a fully-functional decision-making capability for supervisory control [FY15]

Work Package SR-14AN130101 – Impact of Active Control on Passive Safety

Task Relevancy

AdvSMR operational flexibility is important

- Multiple units, high penetration of renewables
- Backbone of a small regional grid Limited fossil

Black re-start capability required

- If islanded, meet house load without dependence on emergency power => Fast runback
- Control system failure or operator error should not override safe inherent regulation

Technical Approach, Accomplishments/Results

Limit actuator input and initiator size

 Developed protocol for coordinating plant design and control system design to achieve this

Worked through full power case for SFR

 Fuel conductivity is a key parameter for protection against inadvertent over-ride of inherent safety

Post fast-runback is the limiting case

- Developed passive control scheme to minimize risk of initiator for islanded plant
- Characterized plant stability from first principles
- Demonstrated good stability margin for metal fuel

Stability Characteristics

Representative AdvSMR

Stability Map

Expected Deliverable & Schedule

- Perform simulation-based analysis of passive characteristics and impact of active control actions [FY13]
- Investigate inherent controlability characteristics of representative SMR [FY14]
- Perform comparative study of control and protection system performance [FY15]

11

Work Package SR-14PN130110 – Prototypic Prognostic Technique Demonstration for SMR Passive Components

Task Relevancy

- Enhanced awareness of component condition and predictive estimates of (passive) component failure customized for each unit
 - Early warning of potential degradation in inaccessible passive components leading to failure in advanced reactor environments
 - Compensate for limited knowledge of physics of failure mechanisms in advanced reactor environments
- Tools to enhance and optimize O&M of AdvSMRs to help compensate for economy of scale losses

Technical Approach, Accomplishments/Results

- Prognostic health management (PHM) for AdvSMR passive components using NDE measurements of degradation state as input
 - Focus on local-level and component level prognostics as defined in the research plan
 - Enhancement of local-level prognostics algorithms for passive components to incorporate advanced methodologies, including uncertainty propagation and lifecycle prognostics.
- Initial PHM algorithm development complete
- Experiments for PHM algorithm validation ongoing, using high temperature creep as prototypic degradation mechanism
 - Developed conceptual design of test-bed to evaluate prognostic algorithms for mechanisms of relevance

Expected Deliverable & Schedule

- Complete Local-Level prognostics algorithm development for AdvSMR passive components. – 9/12/2014
- Complete component-level prognostics health management framework development
 FY2015
- Framework to integrate multiple componentlevel PHM systems for comprehensive plantlevel health indicators – FY2016/FY2017

Work Package AR-14PN230102 – Submerged Transducer Assembly for Under-Sodium Viewing

 H_20

Na

Task Relevancy

- The need to re-establish domestic technology infrastructure to support the deployment of SFR technology has been identified
 - A key enabling nondestructive examination (NDE) technology is Ultrasonic Testing for Under Sodium Viewing to:
 - Monitor operations in optically opaque sodium at high temperatures
 - Nondestructively inspect structures, systems, and components within the reactor.

Detection Examples

Technical Approach, Accomplishments/Results

- Designed and tested prototype SN2, linear phased array probe. Many lessons learned.
 - Improvements (from SN1 probe) in reliability, resolution, robustness, sensitivity, and SNR were achieved.
 - Temperature effects, sodium impurity issues, and wetting of the probe face have been successfully addressed.
- To address existing image resolution challenges
 - 2-D matrix array design (for SN3 prototype probe) will be tested and demonstrated in FY15
 - Fabricate/demo (2) pre-manufacturing SN3 prototype probes
 - Initiate commercialization/tech-transfer of SN3 probe

Expected Deliverables & Schedule

- Model/simulate 2-D array matrix and optimize beam steering characteristics and focal dimensions
- Fabricate and test SN3 prototypes
- Document in-sodium PD protocol and results for SN3 prototypes (04/15)
- Tech-transfer package (05/15)
- Identify commercial partner and reach techtransfer agreement (08/15)
- Final M2 report FY15 activities (09/15)

AdvSMR ICHMI & ARC I&C Now Incorporated in ART Program

- Existing research advances state of the technology for addressing critical ICHMI needs to ensure AdvSMR are economically viable and licensable
 - Reduce O&M costs and develop technical basis for regulatory acceptance [innovative Concepts of Operation, efficient Human-Automation collaboration, increased automation and effective inherent control, reduced maintenance and surveillance burden]
- FY15 technical area strategy for programmatic transition
 - Adjust I&C research priorities based on defined focus for combined Advanced Reactor Technologies Program (Fast Reactors, High Temperature Reactors)
 - Emphasize gap resolution for Observability technologies [sensing, inspection and prognostics research]
 - Conclude Operability research focused on longer term, more generic issues
 - Take current projects to logical conclusion
 - Identify opportunities for eventual transition of research topics to NEET ASI or application to specific designs
 - Identify future research targets to proceed with addressing technology gaps