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Project Overview

Nuclear Energy

B Goal: Develop and evaluate a standardized framework for next-
generation online monitoring applicable to current and future
nuclear systems

M Participants:
e PNNL (Pradeep Ramuhalli, Susan Crawford)
e University of Tennessee (Jamie Coble)
e AMS (Brent Shumaker)

M Research directly supports primary goals of
e LWRS, ART, NGNP, MPACT

M Supports secondary goals of
e AF and UNFD
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Objectives

B Develop next-generation online
monitoring applicable to current
and future nuclear systems

e Apply data-driven UQ to develop

methods for real-time calibration
assessment and signal validation

e Robust virtual sensors to augment
available plant information

e Technologies for sensor response-
time characterization

e Considerations for emerging
|1&C technologies
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Project Background

B Measurement reliability key to safe, economic and
secure operation of nuclear systems

e [nterval-based recalibration used to assure reliability

M Current practices have several drawbacks
e Time consuming and expensive
e Sensor calibration assessed infrequently
e Contributes to ALARA
e Unnecessary maintenance may damage healthy sensors o

e Potential for limited opportunities for maintenance in Mencs!
future nuclear systems

e Different failure mechanisms for next-generation sensors
and 1&C
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Sensor Performance Monitoring can
Improve Reliability of Sensing

B Online monitoring (OLM) supports condition-
based calibration of key instrumentation

B OLMtechnologies can

Temporarily accommodate limited sensor failure

Provide indications for measurements that cannot be
made (virtual sensors)

Ensure reliability of next-generation sensors and
instrumentation through formal methods for
uncertainty quantification

Support extended sensor calibration cycles and
reduce or eliminate TS-required periodic
recalibration

Proficy
SmartSignal
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B Standardized framework for next
generation OLM that enables

e Recalibration needs assessment for Signal Validation

dynamic and steady-state operation

e Ability to derive plant information that
currently cannot be measured

e Predictive (over short-term)
assessment of sensor failure

e OLM framework for emerging
|1&C technologies

B Applicability to current and future Advanced
nuclear power systems Algorithms

Uncertainty
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B Signal validation and virtual sensors
e Evaluate how uncertainty drives minimum detection limits and acceptance criteria

e Estimate expected measurement values (and associated uncertainties) for
replacing faulted sensors

e Evaluate the effect of using virtual sensors on OLM and OLM uncertainty
e Develop guidelines for condition-based sensor recalibration
B Assess impacts of next generation sensors and instrumentation
e Requirements definition for OLM in next generation 1&C
e Gaps assessment: Map algorithms (from other tasks) to requirements
B Response time OLM
e Acceptance criteria development
e Adapt research in signal validation for response time OLM
M Verification and validation in a suitable test-bed or operating plant

M Budget
e Planned $1M over three years (FY2015-FY2017)
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B Non-intrusive
e Plant data collected during operation

B Anomalies due to sensor fault vs.
( Plant ] process change
L Model m Acceptance criteria define
+ normal performance bounds
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M Uncertainty is inherent in any measurement process

e Process noise, sensor bias, electronic and measurement noise, etc.
B OLM introduces new uncertainties

e Modeling uncertainty and bias

B Current approach to evaluating measurement uncertainty may
be overly conservative

e Uses manufacturer estimates of sensor noise

e Conservative assumptions about sensor performance over the operating
period

B OLM uncertainty not independent of measurement uncertainty
e Both need to be considered together
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Uncertainty Quantification (UQ)

B Use Bayesian statistics to

guantify uncertainty
e Combine what we already know

(Prior) and the model discrepancy
with the data (Likelihood).

B Model represents relation
between inputs (independent
variables) and outputs (sensor
outputs)

e Update the model in the light of new | _—
observations o e s
M Likelihood information using
multi-output Gaussian processes
that explicitly treat correlations
between distinct output variables
as well as space and/or time.
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Data from Simulations and
Testbeds to Evaluate UQ
Methodology

M Simple heat exchanger loop

B Sensor and instrumentation models
coupled to loop model

M Prescribed uncertainty levels to
directly study effects on sensed
values and OLM results

e Normal and anomalous conditions
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Results from UQ
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Accomplishments

B Reviewed state of the art in OLM for sensor calibration assessment and
identified technical gaps (PNNL-21687)

B Development of framework for data-driven uncertainty quantification
(PNNL-22847.R1)
® Journal/Conference papers and presentations

e “Extending Sensor Calibration Intervals in Nuclear Power Plants,” Transactions of
the ANS 107:327-328, 2012.

e “Recalibration methodology for transmitters and instrumentation,” 2012 ANS
NPIC/HMIT

e “Calibration Monitoring for Sensor Calibration Interval Extension: Identifying
Technical Gaps,” 2012 Future of Instrumentation International Workshop

e “Online Sensor Calibration Assessment in Nuclear Power Systems,” Invited paper,
IEEE 1&M Magazine 16(3):32-37, 2013. doi: 10.1109/MIM.2013.6521132

e “Advanced algorithms for online calibration monitoring of transmitters and
instrumentation,” Presented at ANS Utility Working Conference (August 2013)

e “Approaches to quantify uncertainty in online sensor calibration monitoring,” 2013
ANS Winter Meeting.
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Signal Validation & Emerging 1&C

B Proposed OLM programs require periodic recalibration of a

limited set of sensors

B Signal validation could potentially alleviate that requirement
with high-confidence assessment of sensor status

e Accurate uncertainty quantification
e Combining disparate information sources
M Signal validation approaches can
also be used as a preprocessing
step before advanced monitoring ™"
and control algorithms to ensure

decisions are based on quality
data

B OLM requirements using emerging
|1&C technologies unknown
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Path Forward:
Virtual Sensors

B OLM estimates can replace
faulty sensor measurements

e Uncertainty must account for

spillover of faulty reading into
estimate
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M Research focused on addressing high-impact technical gaps to
developing a standardized framework for robust next-generation

online monitoring
B Outcomes enable
e Extended calibration intervals and relief of even limited periodic

assessment requirements
e Assessment of sensor measurement accuracy with high confidence

e Derived values for desired parameters that cannot be directly measured
B Outcomes support
e Improved reliability and economics for current and future nuclear systems

e Deployment of advanced sensors (ultrasonic, fiber optic, etc.) and
instrumentation (digital I&C, wireless, etc.)
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