BNL Discovery to Deployment: Chemistry for Sustainable Energy

Alex Harris Chair, BNL Chemistry Department

> State Energy Advisory Board October 10, 2012

a passion for discovery

Topics

- BNL Energy Research in Sustainable Chemical Conversion
- Fuel Cell Electrocatalysis: Discovery to Deployment

Brookhaven Energy R&D

BNL

Basic Research, Applied Research, **Collaboration**

BNL Programs DOE Priority Research Directions

ENERGY CHALLENGES. Focus Areas

- **Research for Sustainable Chemical Conversions**
- Science and Technology for Electric infrastructure

Collaborators/Joint Appointments

Chemistry for Sustainable Energy R&D

Sustainable Fuel Production

Catalysis & Photocatalysis for renewable fuels

- Activate CO₂ for fuel synthesis
- Selective synthesis of C1 or higher Cn oxygenates
- Biomass thermochemical conversion to biofuels

Hydrogen as a fuel

- Water splitting catalysis electrocatalysis & photocatalysis
- Natural gas reforming scalable local hydrogen generation

BNL Contributions

- Molecular and Nanostructured catalysts chemical and materials synthesis
- Mechanistic studies and In-situ characterization
 - · Synchrotron Catalysis Consortium
- Computational catalysis for improved design
 - Solar Water Splitting Simulation Team (SWaSSiT)

Sustainable Fuel Use Fuel cell electrocatalysis

 Reduce platinum, increase durability and efficiency

BNL Contributions

- Nanostructured electrocatalysts – design, synthesis and application
- In-situ experiments for fundamental understanding and improved design

Critical links to BNL User Facilities: Catalysis

Catalysis Synergy

Coordinated research - World class capabilities

NSLS

Chemistry

CFN

In Situ photon science

Catalyst Model System

Computation

In situ transmission electron microscopy

Theory & Computation New York Blue

Nanostructured catalysts for improved fuel cells

Fuel Cell: 'Ideal' Energy Conversion

- Direct energy conversion
 - Fuel + O₂ → electrical energy
- High conversion efficiency
- H₂O product in H₂ O₂ cells
 - Pollution-free with H₂
- Continuous, silent operation

Obstacles

1. Cost

Goal: \$30/kW

Durability
5,000 hours, 150K miles

Require Improved Electrocatalysts

- 1. Decrease platinum content
 - in particular in O₂ cathodes
- 2. Increase efficiency
 - enhance CO tolerance (anode)
 - enhance O₂ reduction kinetics (cathode)

Sustainable Fuels: Catalysts for Fuel Cells

Core-shell electrocatalyst development

- Basic Research: DOE Basic Energy Sciences from 1990's
 - Catalytic activity of monolayer/submonolayers of metals
 - Discovered path for fuel cell electrocatalysis breakthrough: tuning monolayer activity, and doping to increase stability.
- Basic-to-Applied Research: DOE BES & EERE 2002-2012
 - Methods for low-Pt core-shell nanoparticle electrocatalysts (3-6 nm)
 - Fuel cell testing: LANL, commercial collaborators
- Applied Research: DOE EERE & Commercial (CRADA) 2005-2012
 - Scale-up synthesis for larger tests.
 - Testing with commercial OEM and catalyst partners.
- Development: commercial licensing to NECC 2011.
 - Successful commercial synthesis at development scale
 - Sampling to automotive OEMs for FCV (e.g., to GM, Toyota, others)

Extra Slides

Hydrogen Economy - Status

- Tremendous progress worldwide in technologies for production and use during the past decade – fundamental and practical advances.
- Recent signs of commercial viability for key products
- Auto OEMs remain committed to early commercial production in 2015/2016
- Japan, Germany and others continue to plan for refueling infrastructure to meet 2015 need.
- US administration has recently indicated increased support, following a period of intense focus on battery solutions.

Worldwide Commitment to FCEVs

The world's leading automakers have committed to develop FCEVs. Germany and Japan have announced plans to expand the hydrogen infrastructure.

Major Auto Manufacturers' Activities and Plans for FCEVs

2010-2013: U.S. demo fleet of 100 vehicles

· 2015: Target for large-scale commercialization

· "FCHV-adv" can achieve 431-mile range and 68 mpgge

Honda

· Clarity FCX named "World Green Car of the Year"; EPA certified 72mpage: leasing up to 200 vehicles

· 2015: Target for large-scale commercialization

DAIMLER Daimler Small-series production of FCEVs began in 2009

 Plans for tens of thousands of FCEVs per year in 2015 -2017 and hundreds of thousands a few years after

· In partnership with Linde to develop fueling stations.

Recently moved up commercialization plans to 2014

General Motors

· 115 vehicles in demonstration fleet

2012: Technology readiness goal for FC powertrain

2015: Target for commercialization

Hyundai-Kia

2012-2013: 2000 FCEVs/year

2015: 10,000 FCEVs/year

· "Borrego" FCEV has achieved >340-mile range.

Volkswagen • Expanded demo fleet to 24 FCEVs in CA

· Recently reconfirmed commitment to FCEVs

SAIC (China) • Partnering with GM to build 10 fuel cell vehicles in 2010

 Alan Mulally, CEO, sees 2015 as the date that fuel cell cars will go on sale.

· BMW and GM plan to collaborate on the development of fuel cell technology

H₂Mobility - evaluate the commercialization of H₂ infrastructure and FCEVs

- Public-private partnership between NOW and 9 industry stakeholders including:
 - Daimler, Linde, OMV, Shell, Total, Vattenfall, EnBW, Air Liquide, Air Products
- FCEV commercialization by 2015.

UKH₂Mobility will evaluate anticipated FCEV roll-out in 2014/2015

- 13 industry partners including:
 - Air Liquide, Air Products, Daimler, Hyundai, ITM Power, Johnson Matthew, Nissan, Scottish & Southern Energy, Tata Motors, The BOC Group, Toyota, Vauxhall Motors
- 3 UK government departments
- Government investment of £400 million to support development, demonstration, and deployment.

13 companies and Ministry of Transport announce plan to commercialize FCEVs by 2015

100 refueling stations in 4 metropolitan areas and connecting highways planned, 1,000 station in 2020, and 5,000 stations in 2030.

Based on publicly available information during 2011

North East/East Coast/National Hydrogen Infrastructure

Plan for New York State Hydrogen Highway and Connecting City Plan in Support of early FCEV Deployment – 2015-2020

State of States

Fuel Cells in America 2012

Chemistry for Sustainable Energy: Recent Highlights

- Recent advances in catalysis for a hydrogen economy
 - Hydrogen use: Ultralow platinum fuel cell electrocatalysts
 - Hydrogen production:
 - Hydrocarbon reforming: hydrogen purification catalysis
 - Water electrolysis new ultralow and zero platinum electrocatalysts for hydrogen evolution
 - Hydrogen storage: new catalyst for CO₂ ↔ Formate interconversion to store hydrogen chemically
- BNL catalysis capabilities and expertise for the future
 - Preparing for NSLS-II
 - Scientific Recruiting

Hydrogen as a Clean, Efficient Fuel

New water-gas shift catalysts for high purity hydrogen from abundant natural gas: Promising metal-doped reducible oxides (TiO_x, CeO_x)

Science **318**, 1757-1760 (2007) Proc. Nat. Acad. Sci. **13**, 4975 (2009)