

Concentrating Solar Power (CSP) Overview

Mark S. Mehos CSP Program Manager

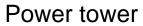
National Renewable Energy Laboratory

Golden, CO

Outline

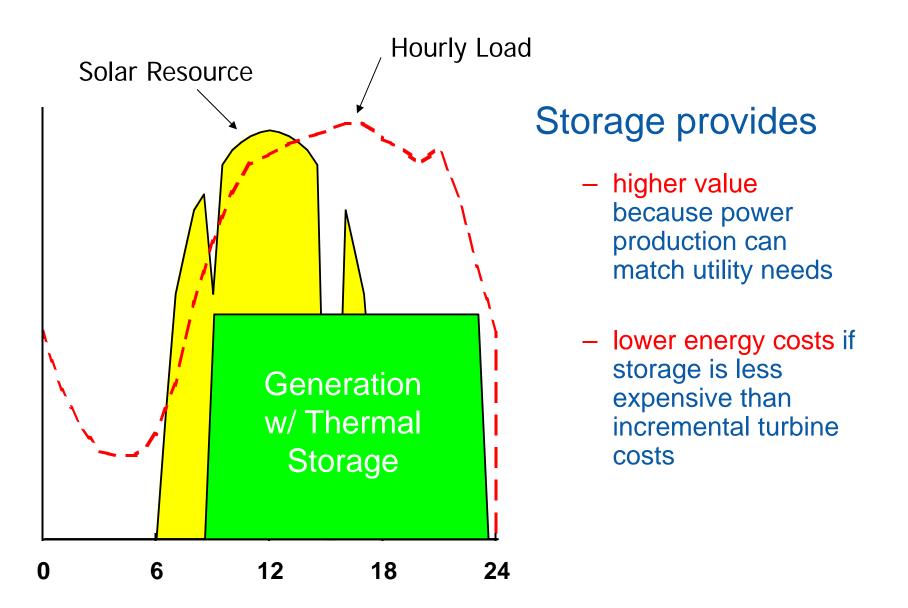
- Technology Overview
- U.S. and International Market Overview
- DOE Research and Development

CSP, aka Solar Thermal Power

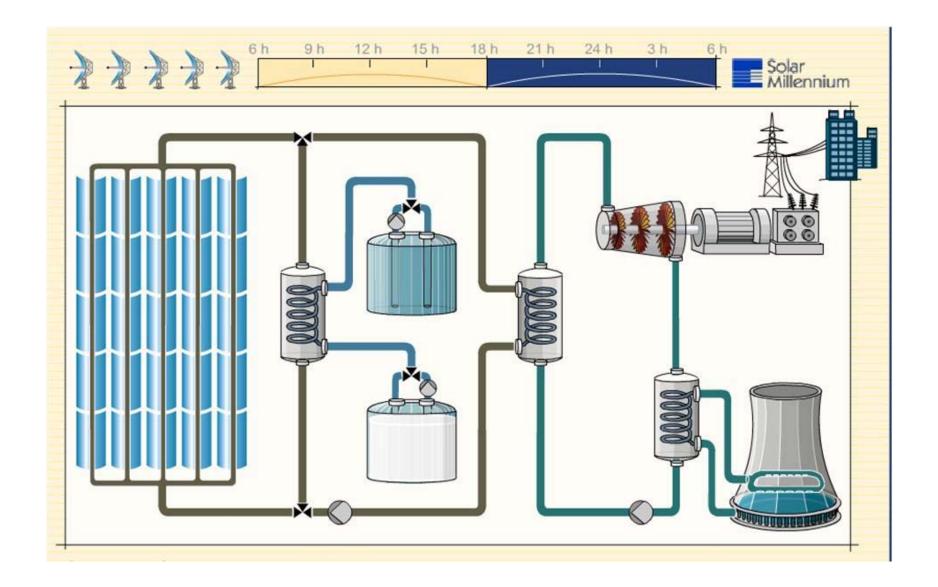


Parabolic trough

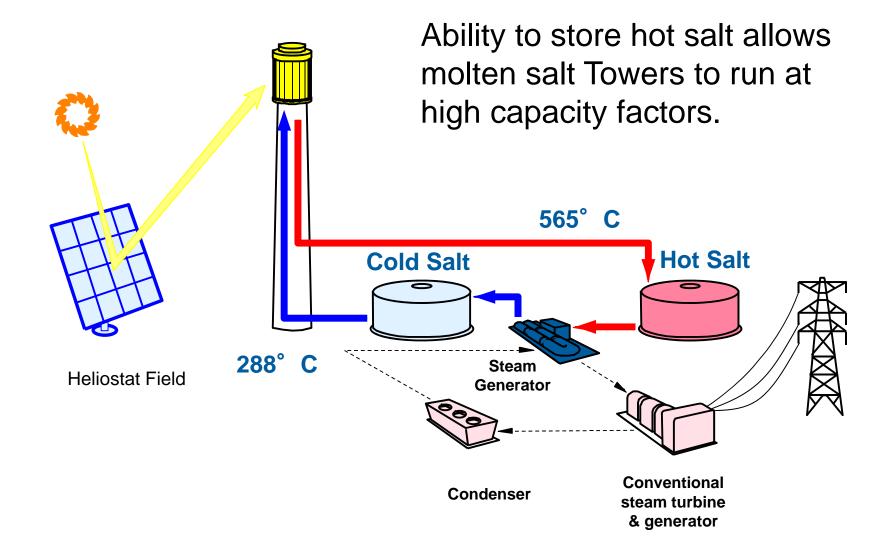
Linear Fresnel


Dish/Stirling

Parabolic Trough



www.centuryinventions.com


Value of Dispatchable Power? Meets Utility Peak Power Demands

Parabolic Trough Plant

Molten Salt Power Tower

Dish/Engine

Innovation for Our Energy Future

Parabolic Trough

Design approaches:

• Oil HTF

 All commercial plants to date

Molten Salt HTF

- Archimedes (pilot)
- Abengoa (R&D)
- Solar Millennium (R&D)

Direct Steam HTF

• Abengoa (R&D)

Power Tower (Central Receiver)

Design approaches:

- Direct Steam HTF
 - Abengoa PS10/PS20
 - BrightSource (pilot)
 - -eSolar (pilot)

Molten Salt HTF

- Solar One (pilot)
- Gemasolar (under construction)
- SolarReserve

• Air HTF

• Jülich (pilot)

Dish/Engine & Concentrating PV

Dish/Stirling: Pre-commercial, pilot-scale deployments

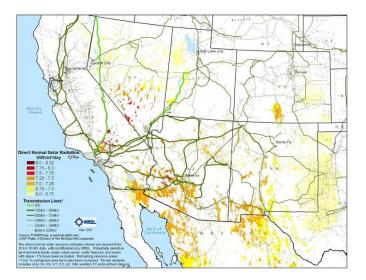
Concentrating PV: Commercial and precommercial pilot-scale deployments

- Modular (3-25kW)
- High solar-to-electric efficiency
- Capacity factors limited to 25% due to lack of storage capability

National Renewable Energy Laboratory

Technology Comparison

	Trough	Power Tower	Dish / Engine	PV
Typical Operating Temp	390C	565C	800C	n/a
Utility scale (>50 MW)	Х	Х	Х	х
Distributed (<10MW)			Х	х
Energy Storage	Х	Х		
Water use for cleaning	Х	Х	Х	Х
Water use for cooling	preferred	preferred		
Land Use (acre/MW)*	5-9	3-9	8-9	5-9
Land Slope	<3%	<5%	<5%	<5%
Technical maturity	medium	low	low	low to high


* Dependent on location and if storage included, values shown based on plants or announced projects

- Technology Overview
- U.S. and International Market Overview
- DOE Research and Development

CSP Market Goals

 Competitive in southwest intermediate load power markets (\$0.12/kWh nominal LCOE) by 2017

 Expand access to include carbon constrained baseload power markets (\$0.10/kWh nominal LCOE) by 2020

Utility CSP: LCOE Targets, DOE analysis

2015 (est.) 2030 (est.) 2009 30 CSP LCOE with 10% ITC * 16 - 20 11 - 16 7 - 10 CSP LCOE with 30% ITC * 10 - 14 7 - 11 N/A Cost of Energy in Cents/kWh (2009\$) 25 Wholesale Electricity Rates [‡] 4 - 7 4 - 85 - 11 CA Market Price Referent § 12 - 14 12 - 15 13 - 16 20 Investment Tax Credit (ITC) Changes after 2016 15 10 5 0 2009 2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030 Year

* Assumes IOU or IPP ownership of CSP, and thus the LCOE includes the taxes paid on electricity generated. Includes 5-year MACRS but not state or local incentives. The range in utility CSP LCOE is due to different technologies, capacity factors and financing conditions. For a complete list of assumptions, see DOE Solar Cost Targets (2009 – 2030), in process.

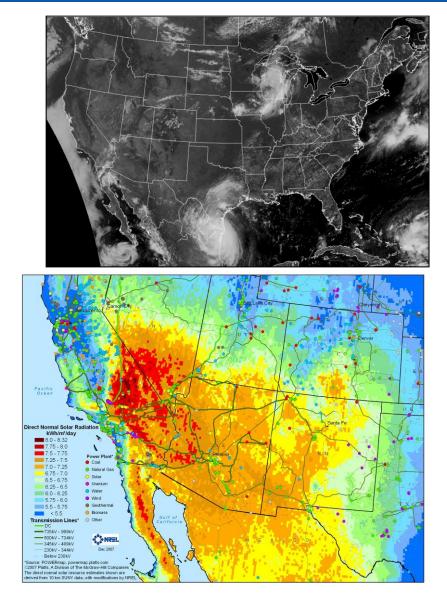
‡ The electricity rate range represents one standard deviation below and above the mean U.S. wholesale electricity prices.

§ The 2009 CA MPR includes adjustments by utility for the time of delivery profile of solar (low case: SDG&E, mid case: PG&E, high case: SCE).

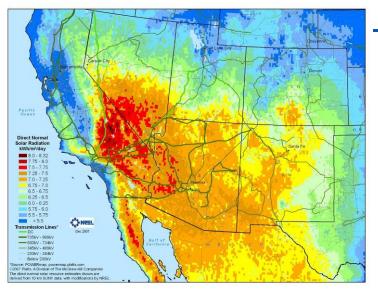
<u>2015</u>

- With the 30% ITC, CSP is below the CA MPR under all conditions and competitive with high wholesale electricity rates under the best financing conditions
- With the 10% ITC, CSP is equal to the CA MPR under almost all conditions

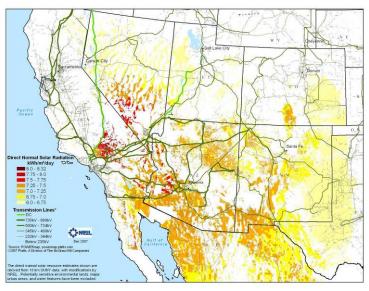
<u>2030</u>

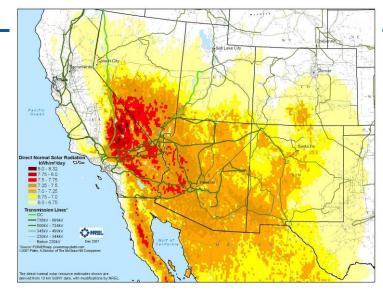

 With the 10% ITC, CSP is broadly competitive with wholesale electricity rates under all conditions

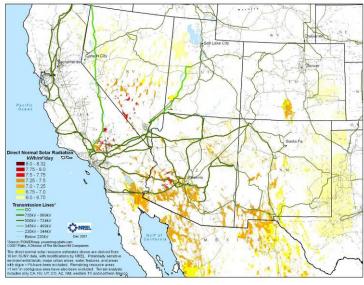
Utility CSP


U.S. Southwest GIS Screening Analysis for CSP Generation

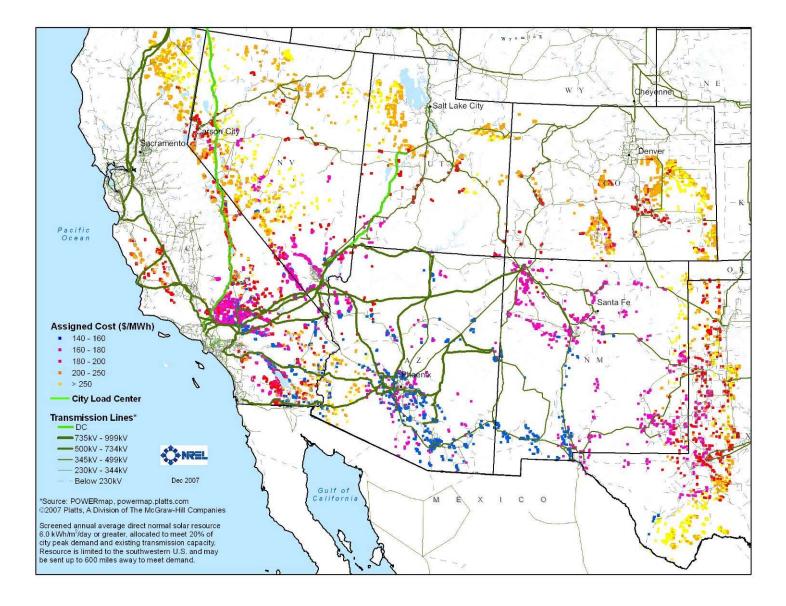
Screening Approach


- Initial solar resource and GIS screening analysis used to identify regions most economically favorable to construction of largescale CSP systems
- GIS analysis used in conjunction with transmission and market analysis to identify favorable regions in the southwest

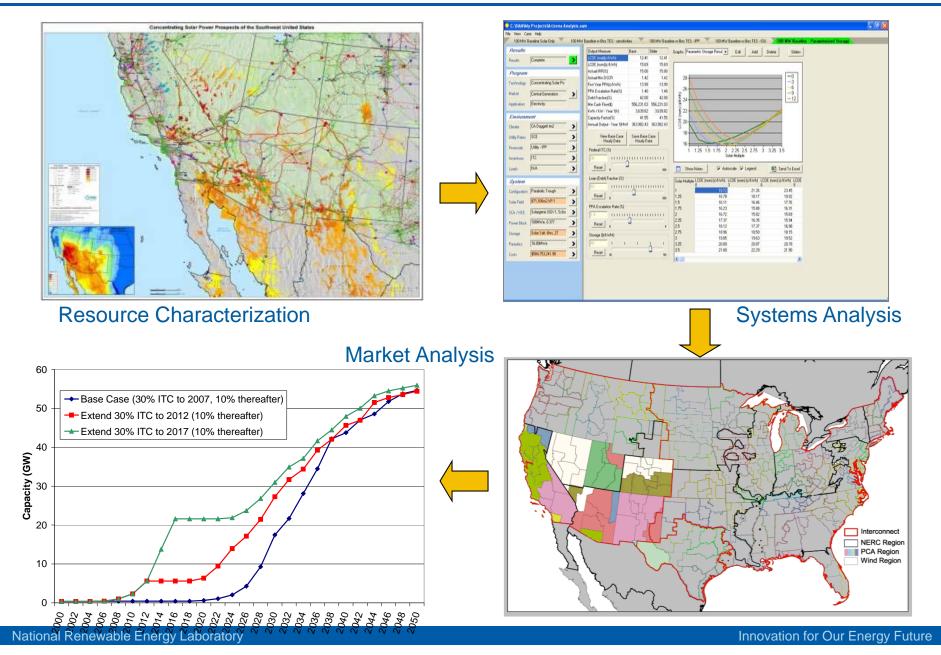

Solar Resource Screening Analysis


Unfiltered Resource

Land Exclusions

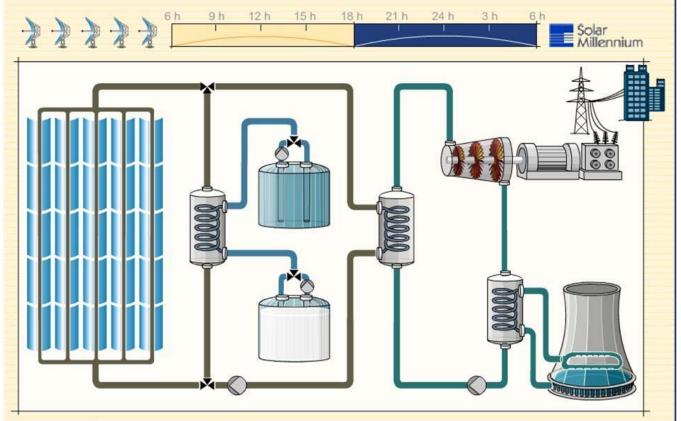


Solar > 6.0 kwh/m²-day



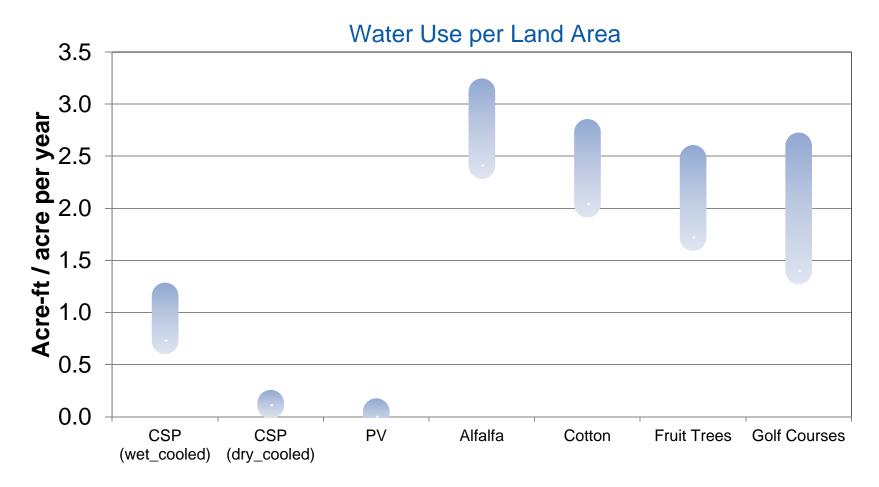
Slope Exclusions

Optimal CSP Sites – Transmission and Resource



Analysis Products

Water Use


Many power plants (including most CSP) use a Rankine steam power cycle to make electricity.

Rankine power cycles require cooling to condense the steam for reuse.

CSP Water Use

Sources:

CSP: Reducing Water Consumption of CSP Electricity Generation, Report to Congress 2009. Crops: Blaney, Monthly Consumptive use of Water by Irrigated Crops & Natural Vegetation, 1957. Golf : Watson et al., The Economic Contributions of Colorado's Golf Industry: Environmental Aspects.

354 MW Luz Solar Electric Generating Systems (SEGS) Nine Plants built 1984 - 1991

64 MWe Acciona Nevada Solar One Solar Parabolic Trough Plant

50 MW AndaSol One and Two Parabolic Trough Plant w/ 7-hr Storage, Andalucía

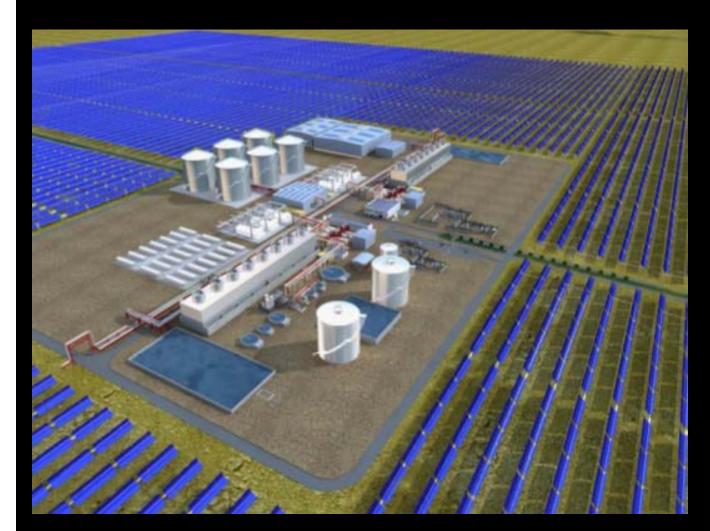
Abengoa 50MW Trough Plants Seville, Spain

50 MW Iberdrola Energia Solar de Puertollano Puertollano (Ciudad Real)

Abengoa PS10 and PS 20, Seville, Spain

Power Tower Pilot Plants

6 MW_{thermal} BrightSource Negev Desert, Israel


5 MWe eSolar California, USA

1MW Dish Demonstration – Phoenix, AZ

Planned 280 MW Solana Plant with 6 hrs Storage

2 x 140MW parallel turbine trains

Solar multiple of approximately 2.0 (3 mi² solar field)

Artist Rendition

U.S. CSP Projects Under Development Source: SEIA

Projects Under Development: Concentrating Solar Power (including Concentrating Photovoltaic)

Developer	Project Name	Electricity Purchaser	Location	Technology	Capacity (MW)
Abengoa Solar	Mojave Solar	Pacific Gas & Electric	San Bernardino County, CA	Trough	250
Abengoa Solar	Solana	Arizona Public Service	Gila Bend, AZ	Trough	280
Acciona Solar Power	Ft. Irwin Solar Power Project	U.S. Army/surrounding utilities	Ft. Irwin, CA	Trough	980
Albiasa	Kingman project		Kingman, AZ	Trough	200
Bell Independent Power Corp	UA Tech Park thermal storage demonstration project	Tuscon Electric Powother	Tuscon, AZ	Trough	5
Boulevard Associates LLC	Sonoran Solar Energy Project	othor	Maricopa County, AZ	Trough	375
BrightSource Energy	Ivanpah Solar Electric Generating System (SEGS) I	Southern California Iso	Barstow, CA	Tower	100
BrightSource Energy	Ivanpah Solar Electric Generating System (SEGS) II	Southern so	Barstow, CA	Tower	100
rightSource Energy	Ivanpah Solar Electric Generating System (SEGS) III	South	ow, CA	Tower	200
rightSource Energy		s or		Tower	1,200
mcore/SunPeak Power			e	Lens CPV	200
Solar	Gaskell Sun Tower (Phase I)	Dish 🖻		Tower	105
Solar	Gaskell Sun Tower (Phase II)	n		Tower	140
Solar	Santa Teresa New Mexico SunTower			Tower	92
Solar	Alpine SunTower			Tower	92
larper Lake, LLC	Harper Lake Solar Plant			Trough	250
nland Energy, Inc.	Palmdale Hybrid Gas-Solar plant			Trough	50
nland Energy, Inc.	Victorville Hybrid Gas-Solar plant			Trough	50
lextEra Energy Resources	Beacon Solar Energy Project		- · · ·	Trough	250
lextEra Energy Resources	Genesis Solar Energy Project		Trough	Trough	250
acific Light & Power	Westside solar project	perati	<u> </u>	Trough	10
an Joaquin Solar, LLC	San Joaquin Solar 1	ower /		Trough	53
an Joaquin Solar, LLC	San Joaquin Solar 2			Trough ¹	53
kyFuel	SkyTrough demonstration	dison		Trough	43
olar Millennium	Amargosa Farm Road Solar Energy Project 1			Trough	242
olar Millennium	Amargosa Farm Road Solar Energy Project 2		NV	Trough	242
olar Millennium	Blythe Solar Power Project	Sou a Edis	A	Trough	1,000
olar Millennium	Ridgecrest Solar Power Project	Southern ia Edi	gecrest, CA	Trough	250
olar Millennium	Palen Solar Power Project	Southern California Edison	Desert Center, CA	Trough	250
plarReserve	Rice Solar Energy Project	Southern California Edison	Riverside County, CA	Tower	150
blel	Mojave Solar Park	Pacific Gas & Electric	Mojave Desert, CA	Trough	553
essera Solar	SES Solar One	Southern California Edison	Victorville, CA	Dish-engine	850
essera Solar	SES Solar Two	San Diego Gas & Electric	Imperial County, CA	Dish-engine	750
essera Solar	SES Solar Three		Imperial County, CA	Dish-engine	550
essera Solar	Western Ranch	CPS Energy	San Antonio, TX	Dish-engine	27
onopah Solar Energy, LLC	Crescent Dunes Solar Energy Project	NV Energy	Nye County, NV	Tower	180
	New Mexico CSSP	Public Service of New Mexico	NM	Trough	70

(1) Hybrid solar plants cofiring with other fuels (output reflects peak solar contribution)

Concentrating Solar Power Total (MW)

I (MW) 10,443

Discussion

- Technology Overview
- U.S. and International Market Overview
- DOE Research and Development

Technology/Market Support Activities

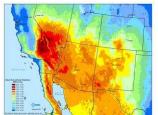
Concentrator/receiver R&D

- optimize receiver and concentrator designs
- develop next-generation collector designs
- create advanced evaluation capabilities

Advanced Thermal Storage

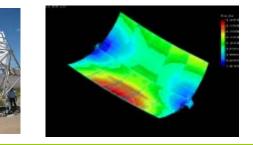
- develop advanced heat transfer fluids for more efficient operation at high temperatures
- analyze and test innovative designs for low-cost storage options

Advanced CSP Concepts and Components


- develop, characterize, and test advanced reflector and absorber materials
- develop and test advanced system components and cycles

CSP Market Transformation

- conduct market penetration analyses
- resource measurement and forecasting
- CSP benefits / impacts analyses



Thank you!

For more information see: http://www.nrel.gov/csp/ http://maps.nrel.gov/ http://solareis.anl.gov/

Craig Turchi Concentrating Solar Power Program 303-384-7565 craig.turchi@nrel.gov