#### **DOE/OE Transmission Reliability Program**

# Using Industrial Loads for Provisioning Ancillary Services

Jose Gracia, ORNL

Supriya Chinthavali, ORNL

Jibonanda Sanyal, ORNL

Anna Shipley, SRA Intl.

graciajr@ornl.gov June 10-11, 2015 Washington, DC





## **Overall Project Objective**

 Industrial Load as a Resource is focused on demonstrating the technical feasibility and business case for the utilization of industrial loads to provide ancillary services support.







### **Past Accomplishments**

- Industrial LAAR demonstration at Veolia North America facility was completed
- Received all data reports from project partner Enbala
- Determined needs for reducing hurdles to broader implementation of LAAR services, both from the customer and utility/ISO perspective
- A tool for determining cost-effectiveness (from the customer's perspective) of utilizing industrial loads for ancillary services support was proposed





# Past Accomplishments – Veolia Demonstration



| Chilled Water Loop Temperature (°F) |                   | LCHWT                                                                                                                      | CHILLER RESPONSE |
|-------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------|------------------|
| High Limit                          | 39°F              | TOO HIGH                                                                                                                   | INCREASED LOAD   |
| Loop temperature                    | 37°F< LCHWT <39°F | Within this defined temperature range, the EPN<br>can request the loop temperature change to<br>increase or decrease load. |                  |
| Low Limit                           | 37°F              | TOO LOW                                                                                                                    | DECREASED LOAD   |

During demonstration, on-site engineers and operators noted that even with Enbala controls performing actions, they saw no change on process or jumps outside of bounds.





CERTS

#### **Past Accomplishments - Lessons**

- Water chilling loops appear to be great candidates for regulation resources.
- Veolia Energy receives compensation from Enbala based on its level of availability and contribution in Enbala's network. Enbala takes the risk of complying with PJM regulation requirements.
- Facilities with large thermal resources (such as CHP) may also be candidates for providing regulation and other ancillary services.





### **Past Accomplishments – Needs**

- If industrial loads are to become a viable resource for ancillary services support, there needs to be methods for determining site and load feasibility that are simple and inexpensive.
- Enbala and Veolia took on significant financial risk in order to demonstrate the viability of industrial loads for regulation – it is not reasonable that this can be replicated over and over again.







CONSORTIUM FOR ELECTRIC RELIABILITY TECHNOLOGY SOLUTIONS

# **Looking Forward**

The next phase of this project will build on this work and focus on establishing the business case for any potential industrial ancillary services provider. The next steps are:

- Create a user-friendly tool and guidance document to assist ORNL staff in discussions with potential industrial or commercial electricity users.
- Identify an opportunity for a follow-on Load as a Resource demonstration in an industrial facility to be co-funded by Advanced Manufacturing Office (AMO).





# **Tool Development Efforts**

ORNL is working on developing userfriendly on-line tool and guidance document for use in discussions with potential industrial and commercial electricity end-users. This will build upon the IGATE-E Modeling activities conducted in FY 14.

# Port Data Sc 2011[Med Packing Parkis](United States) Image: Sc 2011[Med Packing Parkis](United States) Sc 2011[Med Packing Parkis](United States) Image: Sc 2011[Med Packing Packing Parkis](United States) Image: Sc 2011[Med Packing Pack

#### **Model Objective:**

This tool will assist ORNL staff in working with individual facility managers in determining if participating in ancillary services markets makes sense as a stand-alone business decision, or only as and "add-on" activity when meter and control instrumentation is being installed.





# **Tool Development Efforts**

#### Tool Inputs:

- Facility electricity usage (kW and kWh), monthly for 12 months
- Facility thermal usage (MMBTU, MMBTU/hr), monthly for 12 months
- Market data for different services (\$/kW or \$/kWh)
- Quantity of flexibility by industry for different services
- Cost of production loss (\$/product quantity)
- Thermal and electrical load shapes
- SIC (NAICS) code
- Zip code
- Desired rate of return
- Weighted average cost of capital
- Estimate of additional benefits (\$/month or \$/year) from any improvements to control systems





# **Tool Development Efforts**

Tool Outputs:

- Estimate of % and absolute amount of available electrical resource can be used for DR services (kW)
- Estimate of market value of DR services on a per month basis (\$)
- Estimate of maximum investment for additional controls or instrumentation and installation that would provide the desired rate of return, based on average weighted cost of capital (\$)





# Deliverables

- Report on data gathered on regional ancillary services markets – Summer 2015
- Industrial sector ancillary services market potential by region Fall 2015
  - Currently gathering regional data and establishing data schemas
- Demonstration of "beta" business case tool Fall 2015





# **Follow-On Work**

- Once the tool is complete, the efficacy of both the tool and additional types of industrial loads to provide ancillary services will be determined
- Identify demonstration partner
- Additional revenue stream identification if it is determined that there is not significant cost-effective potential for ancillary services support, are there other economic streams that would make this cost-effective? If so, determine what those are.



