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DOE-AMO Analysis Summary — ANL/NU
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* Quantifying, from a life-cycle perspective, the enabling
effects of advanced manufacturing in achieving AMQO’s
mission for energy savings across the economy

« Assessing net energy, emissions, and economic
effects over different scales of time and space

adoption

Prospecﬁve‘

* Providing robust early information on the drivers and
LCA

potentials of advanced manufacturing, rooted in deep
technical understanding of emerging applications

* Analyzing key emerging technologies and trends:
vehicle lightweighting, wide band gap materials,
additive manufacturing, natural gas to chemicals,
and distributed manufacturing



Additive Manufacturing
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Motivation: Resource
efficiency, flexibility, and
modular design of additive
manufacturing could be
transformative, enabling
competitiveness and
distributed manufacturing

R&D challenges
* Low throughput
» Residual stresses
* Repeatability
« Surface quality
* High cost

Critical
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AM industry: 29% growth in the last three years - predicted to be > 30% CAGR

through 2020

Aircraft industry case study - key early adopter (12.3% of AM industry)



Additive manufacturing —
model framework and methodology NORTRE

Framework rooted in deep technical understanding of AM process and markets
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Rigorous modeling of
conventional and
emerging metals
manufacturing
technologies

Technology
adoption and stock
turnover modeling



Cradle-to-gate life cycle impacts
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Resource production dominates cradle-to-gate energy consumption
Significant materials efficiency gained with AM
Energy savings potentials vary by component — highlights strategic target markets
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Cradle-to-grave life cycle impacts e

UNIVERSITY

180

150
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Total primary energy savings potential = 50

70-173 million GJ/year by 2050;

cumulative primary energy savings of . e —aerarara
2%15 2020 2025 2030 2035 2040 2045 2050

1.2-2.8 billion GJ through 2050.

Fleet-wide primary energy\ruesaé implications of AM Adoption
Most of the energy savings from
reduction in use-phase fuel
consumption — further lightweighting
achievable with improved
component design

M cradle-to-gate ® use-phase

B Furnishings and equipment, structure
B Furnishings and equipment, function
H Engine, function

® Engine, auxiliary

1 Propulsion systems

® Body systems, auxiliary

" Nacelle systems, auxiliary

million GJ

Rapid adoption scenario highlights
benefits of aggressive deployment and
more immediate progress to overcome
engineering limitations (surface
roughness, residual stress, etc.)

e Fleet-wide cumulative primary energy savings through 2050
i-\:, — breakdowns by life cycle phase and by component for g

j—————— mid-range adoption scenario, high end of range



Additive Manufacturing —
'Enabling Competitiveness & Distributed Manufacturing ™%ss™
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« Consideration of benefits to production economics and competitiveness -
shed light on the potential business case for AM investments

« Analysis of projected trends in technology improvement

« Uncertainty and scenario analysis to enable robust AMO assessments
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