

ENERGY Energy Efficiency & Renewable Energy



# 2015 PROJECT IEW

U.S. DEPARTMENT OF ENERGY BIOENERGY TECHNOLOGIES OFFICE

Sustainability & Strategic Analysis

Kristen Johnson Technology Manager

1 | Bioenergy Technologies Office eere.energy.gov

## Introduction: Analysis & Sustainability (A&S)





- The Team
- Goals & Objectives
- Challenges
- Approach & Partnerships
- Budget
- Key Accomplishments
- Future Directions
- Upcoming Activities



## **Introductions: Analysis & Sustainability Staff**



**Alison Goss Eng** 



**Alicia Lindauer** 



**Max Broad (BCS)** 



**Kristen Johnson** 



Nick Massey (CNJV)





## **Analysis & Sustainability: Critical to BETO's Mission**

Proactively addresses issues that affect the scale-up potential, public acceptance, and long-term viability of the Office's technology investments.



Equips DOE with analyses and expertise to inform national and global dialogues on the benefits and impacts of bioenergy.





## **Goals and Objectives**

#### **Strategic Analysis**

Provide context and justification for decisions at all levels by establishing the basis of quantitative metrics, tracking progress toward goals, and informing portfolio planning and management

#### **Cross-Cutting Sustainability**

Understand and promote the positive economic, social, and environmental effects and reduce the potential negative impacts of bioenergy production activities



### **Dimensions of Bioenergy Sustainability**

#### Economic Sustainability

- Commercial viability
- Return on investment
- · Net present value
- · Process efficiency
- Output of desired products



#### Social Sustainability

- Social acceptability
- · Social well-being
- Energy security and external trade
- Rural development and workforce training

#### **Environmental Sustainability**

ENVIRONMENTAL

- Climate
- · Soil quality and agronomics
- · Water quality and quantity
- · Air quality
- · Biological diversity
- · Land Use



#### **A&S Projects**

Standardized methods and analytical approaches

Practical tools, models, and best practices

Analyses on potential impacts and strategies for beneficial outcomes

Role of
Analysis &
Sustainability







Analytical basis for strategic planning, decision-making, and assessment of progress to support BETO, EERE, and DOE goals

#### **A&S Projects**

Standardized methods and analytical approaches

Practical tools, models, and best practices

Analyses on potential impacts and strategies for beneficial outcomes

Role of
Analysis &
Sustainability

Program-wide Interface

Data and analysis on environmental and economic performance

Sharing of findings and best practices

**FSL** 

Algae

Conversion

DMT



Analytical basis for strategic planning, decision-making, and assessment of progress to support DOE, EERE, and BETO goals

#### **A&S Projects**

Standardized methods and analytical approaches

Practical tools, models, and best practices

Analyses on potential impacts and strategies for beneficial outcomes

Role of
Analysis &
Sustainability

Program-wide Interface

Data and analysis on environmental and economic performance

Sharing of findings and best practices

**FSL** 

Algae

Conversion

DMT

Intra- and inter-agency coordination, stakeholder engagement, and international dialogues



## **Key Challenges**

















Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET)

Water Assessment Tool for Energy Resources (WATER)

Biomass Scenario Model (BSM)

Landscape Environmental Assessment Framework (LEAF)

Jobs & Economic Development Impact (JEDI)

Soil & Water Assessment Tool (SWAT)

















## **Budget (FY13-FY15)**

### Annual budget about \$11 M

- Strategic Analysis
- Cross-cutting Sustainability

#### Currently 29 projects

- 25 national lab projects
- 4 academic/industry projects (existing competitive projects not funded by A&S)





#### Enhanced widely used tools and models

- GREET.net 2014
- Biomass Scenario Model (BSM) on KDF
- WATER 3.0 2015
- Simulation of bioenergy crops and ag residue in SWAT model (Purdue)
- Suite of Jobs and Economic
   Development Impact (JEDI) models









## Increased integration of techno-economic and environmental analyses

- Design cases of biofuel pathways
  - Environmental sustainability metrics for conversion stage
  - GREET analysis of full pathway to identify drivers of GHG emissions
    - Corn stover to ethanol via fermentation
    - Southern pine to ethanol via gasification
    - Hybrid poplar to renewable gasoline and diesel by fast pyrolysis
    - Algae hydrothermal liquefaction
    - Additional pathways underway
  - Assessment of federal air pollutant emission regulations potentially applicable to a biorefinery (fast pyrolysis and sugars-to-hydrocarbons)
  - Estimates of maximum potential emissions of regulated air pollutants for a biomass depot (for fast pyrolysis and sugars-to-hydrocarbons biorefineries)
- Coordination between INL, NREL, PNNL, and ANL
  - Sharing data and results
  - Developing pathways in GREET and WATER models



## Developed innovative approaches to multiattribute sustainability assessments

Applied LEAF to identify opportunities for energy crop production based on subfield-scale distribution of profitability

- Increase profit and productivity
- Reduce erosion and nitrate runoff









## Developed innovative approaches to multiattribute sustainability assessments

Developed framework for using indicators to assess progress toward bioenergy sustainability

- Uses Multi-Attribute Decision Support System (MADSS)
- Determines relative contributions of three "pillars" to overall sustainability
- Applied to bioenergy crop production system in East Tennessee







## Contributed to high-profile international dialogues and publications

- Intergovernmental Panel on Climate Change (IPCC)
- SCOPE Bioenergy & Sustainability Project: Bridging the Gaps
- Draft standard ISO13065, Sustainability Criteria for Bioenergy
  - Systematic methodology based on evidence
  - Measurable, reproducible, verifiable
  - Clarify accounting for fossil and biogenic carbon
  - Methods for detection of soil carbon change
  - Life-cycle assessment methods











## Continued field monitoring and testing of management practices



### ORNL-USFS: Intensive shortrotation pine management



Intensive pine silviculture for bioenergy on 40% of Watersheds B and C (130 ha total; yellow shading on map).

## **Workshops on Landscape Design**

## Incorporating Bioenergy into Sustainable Landscape Designs

Two workshops exploring the science and practice of bioenergy landscape design



- Focus on woody/forestry systems
- Organized by ORNL and NCASI

#### Workshop 2- June 2014, Argonne, IL

- Focus on Midwest/agricultural systems
- Organized by ANL

## Workshop agendas, presentations, and other materials:

- https://bioenergykdf.net/content/incorporating-bioenergysustainable-landscape-designs-workshop
- http://web.ornl.gov/sci/ees/cbes/workshop.shtml





Jointly supported by Analysis & Sustainability and Feedstock Supply & Logistics



## **Funding Opportunity Announcement**

## Landscape Design for Sustainable Bioenergy Systems — Announced on October 20, 2014

 DOE announced up to \$14 million to support landscape design approaches that maintain or enhance the environmental and socio-economic sustainability of cellulosic bioenergy through the improvement of feedstock production, logistics systems, and technology development.





Jointly supported by Analysis & Sustainability and Feedstock Supply & Logistics



#### **Future Directions**

- Further understand and document evolving markets of biofuels and bioproducts
- Continue work to develop and maintain analytical tools, models, methods, and datasets to advance the understanding of bioenergy and its related impacts
- Further integrate sustainability into strategic planning, goal setting, and techno-economic/state-of-technology assessments
- Communicate successes and findings on bioenergy sustainability to the public, other agencies, stakeholders, and international community









## **Upcoming Activities**

- June 23 & 24, Bioenergy 2015
  - Plenary and break-out session on Sustainability



 2016 Billion Ton Update: Sustainability analysis









#### **Peer Reviewers**

- John Sheehan (Lead Reviewer) Colorado State University
- Stephen Costa U.S. Department of Transportation
- Jody Endres University of Illinois at Urbana-Champaign
- Michael Shell U.S. Environmental Protection Agency
- Candace Wheeler General Motors

