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Goal Statement 

Cellulase Action 

Lignin Binding 

LPMO mechanism Reactor Design 

Understand 
relevant 
processes at 
Molecular 
Level 

Predict 
improved 
enzymes, 
pathways, and 
process 
parameters. 

Test and 
select best 
hypotheses 
from 
experiment 

Streamline 
path to 
improved 
biofuel 
processes 
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Project Context in 2017 Process Target  

Task 1 – Enzyme Design 
Task 2 – Metabolic pathways 

Task 3 – Process Modeling TEA 
Task 1 – Enzyme Design 
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Project Context in 2022 Process Target  
Task 1 – Enzyme Design 

Task 3 – Process Modeling 
and Reactor Design 

Task 2 – Metabolic Pathways 
      (increase yield, new products) 
Task 1 – Enzyme design  
      (increase performance, stability, specificity) 

TEA 
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Quad Chart Overview: Project 2.5.1.100 

Bt-B. Biomass and Feedstock Recalcitrance (1,3) 
Bt-C. Reactor Feed Introduction (3) 
Bt-D. Pretreatment Processing and Selectivity (3) 
Bt-E. Reactor Design and Optimization (3) 
Bt-F. Hydrolytic Enzyme Production (1,2) 
Bt-G. Enzyme Efficiency (1,2) 
Bt-I. Catalyst Efficiency (1,2) 

Budget 

Partners 

Total 
Costs 
FY 10 –
FY 12 

FY 13 
Costs 

FY 14 Costs Total Planned 
Funding  
(FY 15-Project 
End Date) 

DOE 
Funded NA N

A 
1,593K 5,362K 

Project start  FY14-Q1 
Project end  FY17-Q4 
Percent complete  31% 

Timeline 

Barriers 
(associated task)  

Other Collaborations 
UCSD/SD Supercomputer Center 
U. Kentucky 
ORNL 
Swedish Univ. Agricult. Sciences 
University of Portsmouth, UK 
University of York, UK 
Purdue 
UC Berkeley 
Norwegian U. Life Sciences 
University of Tokyo 
University of Oxford, UK 

NSF Xsede Computer Resource 
U. Colorado, Boulder 
U. Colorado,Denver 
U. Virginia 
Vanderbilt University 
Univ. South Florida 
Penn State University 
University of Michigan 

•Internal Partners 
2.5.4.100 Enzyme Engineering and Optimization 
2.3.2.105 Biological Upgrading of Sugars 
2.4.3.102 Targeted Microbial Development 
2.2.3.100 Pretreatment and Process Hydrolysis 
2.1.0.100 Biochemical Platform Analysis 
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1 - Project Overview 
Objectives: 
Improve enzymes,  
metabolic pathways,  
and industrial processes  
for biofuel production. 
Contribute to achieving  
2017 and 2022 targets 
 

membrane 

xylose 

transporter 

Context:  
Aligned with multiple projects 
2.5.4.100 Enzyme Engineering and 

Optimization 
2.3.2.105 Biological Upgrading of 

Sugars 
2.4.3.102 Targeted Microbial 

Development 
2.2.3.100 Pretreatment and Process 

Hydrolysis 
2.1.0.100 Biochemical Platform Analysis 

History:  
FY13 Subtasks to Targeted 
Conversion Research Task (Himmel) 
and Chemical Conversion (Johnson). 
 
FY14 split off into independent 
Project with two original tasks and an 
additional metabolic modeling task. 
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2 – Approach (Technical) 
• Approach:  

o Complement Experiment and Measurement with Theory, Simulation 
and Modeling. 

o Strong communication between experimental and modeling efforts 
o Target worst bottlenecks in processes. 

• Objective: 
o Gain insight 
o Guide experiment and design 
o Increase efficiency 

• Success Factors: 
o Insights 
o Reduced time to solution: increasing titer, efficiency, speed 
o Reduced cost of biofuels 
o New routes to advanced fuels 

• Go/No-Go Decisions 
o Deadlines: If predictions for improvement cannot be delivered in time for Targets, 

research efforts are terminated and redirected to achievable goals. 
o Success of predictions: If predictions do not result in improvement, approach is 

abandoned for better approaches. 
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2 – Approach (Management) 

[Task 3] Mechanistic Process  
               Modeling    J. Stickel 

[Task 2] Metabolic Modeling and  
          Pathway Engineering   Y. Bomble 

[Task 1] Mechanisms and Enhancement 
of enzymes.       M. Crowley 

Project 

Project is split into tasks according to type of modeling and managed by person 
with appropriate expertise. 

Biochemical Process Modeling and 
Simulation 
M. Crowley 

Structure/function 

Specificity 
Pathway  
modification 

Reaction/diffusion  process tuning 

Sequence 
modification 

Metabolic Pathway  
Flux analysis 
Kinetic modeling 
Sequence Analysis 
Rosetta Design 

Molecular Dynamics 
Quantum Mechanics 

Reaction-Diffusion Modeling 
Coupled CFD/Rxn-Diffusion 
Multi-scale Modeling Reactor Design 

Mechanism/barriers 
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• Cel7A Reaction and Processivity Mechanism 
 
 

• Lytic Polysaccharide Mono-Oxygenase (LPMO) 
 
 
 

• Glycosylation and CBM NMR structure 
 

3 – Technical Accomplishments Task 1 

Knott, et al., JACS 2014 
Knott, et al., JACS 2013 

Kim, et al.,  
PNAS 2014 

Chen, et al. 
PNAS 2014 
Happs, et al.,  
In prep for 
JBC 2015 
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Cel7A Processive Mechanism 

1 5 

4 

3 

2 

6 

1 
2 
3 
4 

5 
6 

Knott, JACS, 2014 
Knott, JACS, 2013 
Beckham, JBC, 2014 

FY14 
Completed 
Milestone 
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Rate-Limiting Step Determined 

1

Processive motion is 
NOT rate-limiting. 

Glycosylation step is 
the rate-limiting step. 

Shift and Deglycosylation 
are NOT rate-limiting. 

Transition state theory (TST) 
 
k=(kBT/h)(κ)(exp(-ΔG‡)/kBT) 

k = 10.8 s-1 k = 7.1 ± 3.9 s-1 

15.5 kcal/mol 

FY14 
Completed 
Milestone 
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3 – Tech Accomp Task 1: LPMO/GH61 

M. Wu, et al, JBC 2013 

FY14 
Completed 
Milestone 

Lytic Polysaccharide Mono Oxygenase (LPMO)       GH61 is a LPMO 

Has HUGE  effect on hydrolysis rates 
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3 – Tech Accomp Task 1: LPMO/GH61 
FY14 
Completed 
Milestone 

Proposed Mechanism 1 Proposed Mechanism 2 

47.5 kcal/mol Barrier 15.9 kcal/mol Barrier 

Kim, et al., PNAS, 2014  



14 

Significance of Accomplishments Task 1 

1

• Mechanisms 
- Understand the molecular mechanism of action 
- Know what the barriers are 
- Eliminate incorrect mechanisms 
- Correctly estimated the speed of action of Cel7A 
- Have applied these methods to other cocktail cellulases 
- Contributed to design of improved cellulases (2.5.4.100) 

• Other Cellulase accomplishments 
- CBM-1 glycosylated NMR structures solved 
- Binding function of Linker correctly predicted 
- Flexibility of linker predicted 
- Huge binding function of CBM glycosylation provides new 

design principle: Glycosylation (not just AA sequence). 
• Insight and Understanding Achieved 
• Prediction of properties 
• Design Principles 
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• Lignin binding of Cellulases 
 
 
 

• Metabolic model for T. reesei 

3 – Technical Accomplishments Task 2 
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Hydrophobic patch scores correlate with enzyme adsorption 

Exposed hydrophobic patch 
 

Big Patch = High Score 
Small Patch = Low Score 

Task 2 Cellulase Binding to Lignin 

Significance 
• Bg-I is the predominant enzyme binding to lignin 
• Identifies enzymes most susceptible to lignin binding 
• Design tool for decreasing lignin binding. 
 
Reduce Bg-I binding to improve enzyme performance in 
current cocktails 

BglI (β-
glucosidase) 

Sammond, et al JBC 2014 

FY14 Completed 
Joint Milestone 

BglI (β-glucosidase) 

Mass Adsorbed in Quartz-Crystal MicroBalance Protein Adsorbed   vs.  Hydrophobic Patch Score 
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Task 2: Metabolic model of T. reesei 

 Trichoderma reesei: Important industrial enzyme source 
 First central carbon metabolic model for T. reesei 
 Model for optimizing growth and increasing product yields 

4 Compartments 

413  Metabolites (species) 

479  Reactions 

75  Pathways 

258  Enzymatic activities 

FY14 Completed 
Milestone 
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• Multi-physics modeling of dilute-acid pretreatment (in 
subsequent slide)  
 
 

• Population-balance modeling of enzymatic hydrolysis kinetics 
 
 
 
 
 
 

• Coupled CFD and kinetics of enzymatic hydrolysis 

3 – Technical Accomplishments Task 3 

Predictive for 
digestion of 
different mixtures 
of crystallinity 

Predictive of reactor performance for different 
configurations, initial conditions, etc. 
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Task 3 : Multi-physics modeling of dilute-acid pretreatment 

Sitaraman, et al., Chemical 
Engineering Journal, 2015 

High-Solids Pretreatment/particles with voids 
• Coupled reaction kinetics, steam-water phase 

transition, and mass and energy transport of Particles 
contain solid, liquid, and gas phases 

• Substrate and Product profiles are predicted 
• Simulated product yield match experimental data 

FY14 Completed 
Milestone 

Predicts effects on pretreatment due to: 
• initial water content  
• time 
• temperature 
• acid loading on pretreatment 
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4 – Relevance 

• 26 publications in high-impact journals (PNAS, JACS, JBC, …) 
• New Insight and Understanding: enzymes, metabolism, processes. 
• Higher performing cellulases - collaboration with Enzyme Design 

project (Himmel) 
• New methods of enzyme design for current and future targets. 
• FY15/16/17 Milestones to design non-glucose-inhibited sugar 

transporters, the 2022 mixed-stream C5/C6 biological upgrading 
becomes feasible. 

• Thioesterase selectivity (Milestone) will add the ability to selectively 
produce hydrocarbons of desired length at the biological sugar-
upgrading stage (2017 and 2022). 

• Metabolic models to produce high-valued coproducts for 2017. 
• Reactor design principles and models provide more accurate 

estimates for costs in TEA analysis 
• Reactor models for aerobic fermentation can be the determining 

factor for the feasibility of full-scale aerobic industrial processes. 
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5 – Future Work (3 Examples) 

• Xylose Transporter Design: Understand and 
eliminate C6 inhibition in collaboration with 
“2.4.3.102 Targeted Microbial Development” to 
enable mixed-stream upgrading of sugars. 
 

• Hydrocarbon enzyme design (Go/No-Go 
9/03/2015): Enhanced hydrocarbon production 
and selectivity by thioesterase and 
decarboxylase design as part of metabolic 
pathways in an industrially relevant organisms.  
 

• Aerobic Fermentation CFD modeling 
(Go/No-Go 3/31/2016): A validated model of 
aerobic fermentation at scale for improved 
reactor design and inclusion in TEA analysis. 

membrane 

xylose 

transporter 
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Summary 

• Addressing 7 of the 11 Barriers in the 2014 MYPP 

• Actively working toward 2017 and 2022 Goals 

• Added new insights and understanding to complex 
processes 

• Large collaborative effort internal to NREL and 
external 

• Large publication record in high-profile journals 
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