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Goal Statement 
Goal: develop strains to produce fuels and co-products for the 2017 and 2022 
Biochemical Conversion Platform cost target goals of $5/gge and $3/gge 
• Fatty acids as fuel precursors, succinic acid as an example product, both aligned with TEA targets 
• “Bioproducts are on the Critical Path” – DOE BETO 

HC fuels alongside co-products will be a major benefit to the US biorefinery infrastructure 
• Conduct TEA/LCA to identify cost drivers and data gaps and to refine process options 
• Collaborate with industry and academics for joint development of strains and process demonstrations 
• Outcome: demonstrated, robust strains for producing HC fuels and co-products in the biorefinery 
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Quad Chart 

• New Project 
• Start date: October 2014 
• End date: September 2017 
• Percent complete: 10% 

• Bt-I Catalyst Efficiency 
• Bt-J Biochemical Conversion Process 

Integration 
• Bt-H Cleanup/Separation 

Timeline 

Budget 

Barriers 

• Industry partners: in talks with industrial entities regarding 
collaborations around both HC and co-product development 
 

• NREL BETO Projects: Biochemical Platform Analysis, Bench-
Scale Integration, Separations Development and Application, 
Catalytic Upgrading of Sugars, Pretreatment and Process 
Hydrolysis, Pilot Scale Integration, Biochemical Process 
Modeling and Simulation, Strategic Analysis Platform 
 

• BETO-funded National Lab Projects: Ongoing discussions 
with PNNL efforts in strain development 
 

• Academic collaborators: University of Pretoria, MIT, UC Davis 
Phaff Yeast Culture Collection, currently in talks with other 
groups for collaborations around both HC and co-product 
development 

Partners and Collaborators 

FY15 

Total 
Planned 
Funding 
(FY16-

Project End 
Date) 

DOE 
funded $1,800,000 $4,200,000 
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Project Overview 

Context: Going “beyond ethanol” to 
produce a broad portfolio of biofuels 
• Produce direct replacements or blendstocks 

for gasoline, diesel, jet fuel markets 
• Move closer to petroleum refinery models 

with fuel and chemicals production together 
• De-risk capital investments in fuels via co-

product manufacturing 

Project Objectives: 
- Develop industrially-relevant strains for fatty acids and an example co-product to meet 

2017 and 2022 cost targets  
- Focus efforts towards titer, rate, and yield targets set by TEA/LCA modeling 
- Rapidly test strains with Bench-Scale Integration Project to identify and solve problems in 

scaling and integration 
 Davis et al., NREL Design Report, 2014 

History: HC fuel R&D primarily began at NREL in the Nat’l Adv. Biofuels Consortium 
• TEA suggests chemicals are essential to cost-effective HC production  
• NREL began developing plans after the 2012 ethanol demonstration to 

meet 2017 and 2022 cost targets for HC fuels at $5/gge and $3/gge 
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Technical Approach  

Approach:  
• Target: 0.4 g/L/hr rate, 60% lipid content, and a 

0.27 g/g yield on C6-enriched sugars 
• Screen natural oleaginous yeast strains 
• Evolve strains to increase lipid yields 
• Engineer select strains for high lipid yields 

Primary challenges and success factors: 
• High yield and productivity of lipids 
• Availability of genetic tools in strains for 

metabolic engineering 

Aim 1: Develop a robust oleaginous strain 

Approach:  
• Target: 2.0 g/L/hr rate, 0.795 g/g yield on C5-

enriched sugars 
• Evaluate natural strains on C5-hydrolyzates 
• Adapt strains to tolerate pretreatment inhibitors 
• Engineer a strain for higher SA yields 

Primary challenges and success factors: 
• Overcoming hydrolyzate toxicity 
• Increasing carbon flux to SA over side products 

Aim 2: Develop robust succinic-acid strain  

Image from W. Nicol 



6 

Management Approach and Outline  
Experienced task leads in 
fermentation, microbiology, and 
metabolic engineering 

Fuel Precursors: 3-pronged 
strategy to mitigate risk  

Develop/impro
ve genetic 

tools 

Apply genetic 
tools for strain 
engineering 

Adapt/probe 
tolerance 

mechanisms 

Evaluate 
strains on C5- 
hydrolyzate 

Natural 
Strains 

Evolved 
Strains 

Engineered 
Strains 

Milestones prioritized to down-
select single fuel and co-product 
strains for 2017 deployment  

Bench-Scale Integration 
Project for Advanced 
Fermentation Testing 

Bench-Scale Integration 
Project for Advanced 
Fermentation Testing 
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Self-consistent screening of oleaginous yeast  

• Obtained oleaginous yeast collection  
• Pursuing self-consistent screening results 

Species being screened : 
• Cryptococcus curvatus 
• Cryptococcus wieringae 
• Kurtzmaniella cleridarum 
• Leucosporidiella creatinavora 
• Lipomyces starkeyi (3) 
• Rhodosporidium babjevae (4) 
• Rhodosporidium dibovatum 
• Rhodosporidium paludigenum 

• Rhodosporidium sphaerocarpum 
• Rhodosporidium toruloidies (6) 
• Rhodotorula glutinis (2) 
• Rhodotorula glutinis “like”  
• Sporopachydermia opuntiana 
• Tremella encepala 
• Trichosporon guehoae 
• Yarrowia lipolytica (10) 

Natural 
Strains 
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Evaluation of oleaginous yeast Natural 
Strains 

Lipid production by L. 
starkeyi in shake flasks 

Lipid production 
by L. starkeyi in 
small fermentors 
– BSI Early Work 

Metric Pure Sugar - 
Flasks 

Pure Sugar - 
Fermentor 

C6 Biomass 
Sugars from Enz 
Hyd.- Fermentor 

Glucose utilization 
(total) 98% 80% 100% 
Lipid content 59% 60% 57% 
Volumetric 
productivity (g/L-hr) at 
72 h 

0.05 (batch 
culture)  

0.18 (batch 
culture) 

0.29 (batch 
culture) 

Lipid process yield 
(total sugar-to-product 
, g/g) 

0.07 0.13 0.20 
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Strain evolution efforts 

• β-ketoacyl-acyl carrier protein synthases (KS) regulate FA synthesis and are 
inhibited by cerulenin 

• Cells can overcome this inhibition by increasing FA synthase production 

Price et al. 2001, 
J. Biol. Chem. 

Cerulenin Condensation Transition State 

• Approach rapidly led to cerulenin-
resistant mutants 

• Testing these mutants for enhanced 
lipid production currently 

• Will work with JGI to pinpoint genetic 
changes if positive hits are found (to 
make changes permanent) 

Evolved 
Strains 

WT 

Mut 

Mut Mut 

Tapia et al. 2012, 
AMB Express 
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Engineering increased lipids Engineered
Strains 

Simplified metabolism for triacylglycerol production 

RED lines represent initial 
focal points for engineering 

 
Overexpression of native 
biosynthetic genes and 
heterologous expression of 
a phosphoketolase to 
increase acetyl-CoA 
(AcCoA) pools 

Chose L. starkeyi as initial strain for engineering 
• Very high lipid productivities and titers 
• Strain NRRL Y-11557 genome sequenced (Tom Jeffries/JGI) 
• DNA Transformation established (Calvey et al. 2014) 
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Leveraging S. cerevisae for rapid gene identification 

• Leverage single gene deletion and single gene overexpression collections developed 
in S. cerevisiae 

• Developed, validated HTP method to screen for enhanced lipid production  
• Currently screening ~5,000 single gene deletion strains and ~5,000 single gene 

overexpression strains to identify genes whose alteration increases lipid production 
• Leverage these results to apply to more process-relevant but less genetically 

malleable strains, e.g., L. starkeyi 

Engineered
Strains 
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Why a C5-derived co-product? Why succinic acid? 

Direct and functional replacement markets for SA 
- Potential for 4 MM tons/year (Top Ten Report) 
Disseminated results will aid industrial transition from 
starch to lignocellulosic sugars 
- Similar to track record with ethanol demonstration 
Acid functionality common to products of interest 
- Broadly applicable insights in integrated process  

Significant industrial interest 
already in this molecule 

Robust strains exist, enabling an 
aggressive timeline to an 

integrated 2017 demonstration  

Top-Ten Value Added Chemicals 
from Biomass, Vol. 1, 2004 

Image from BASF 
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Strain down-selection 

A. succinogenes B.  succiniciproducens 

Lignin Monomeric sugars Acetic 
acid 

 

HMF Furfural 

All in g/L Cellobiose  Glucose  Xylose Galactose Arabinose 

DCS-hydrolyzate 7.6 1.7 13.1 93.4 6.5 15.8 3.8 0.26 1.8 

0.5 L fermentors 

Evaluate 
strains on C5- 
hydrolyzate 

Species examined from the literature 
• Anaerobiospirillum succiniciproducens 
• Bacteroides fragilis 
• Enterococcus faecalis RKY1 
• Succinivibrio dextrinosolvens 
• Fibrobacter succinogenes 
• Mannheimia succiniciproducens 
• Actinobacillus succinogenes 
• Basfia succiniciproducens 

• Three strains were Biosafety Level 2 (in blue), two strains did not consume xylose (in red), 
and M. succiniciproducens is not publically available 

• Rapidly down-selected to B. succiniciproducens and A. succinogenes 
• Initially screening strains in batch reactors on C5-rich hydrolyzates 

Image from BASF 
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Two leading strains for SA production  
A. succinogenes B.  succiniciproducens 

- Facultative anaerobe, CO2 fixer  
- Produces formic, acetic, ethanol, lactate 
- Produce SA via oxidative TCA cycle branch  
- Does not form biofilm  
- Limited information about this bacterium  

- Facultative anaerobe, CO2 fixer  
- Produces formate, acetate, ethanol  
- Does not have oxidative TCA cycle branch 
- Forms biofilm 
- Extensive information 

McKinlay JB, et al. (2010)  BMC Genomics Becker, J. et al (2013) Biotechnol Bioeng. 

Evaluate 
strains on C5- 
hydrolyzate 
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Testing inhibition in A. succinogenes 
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hydrolyzate with significant lag phase 

• Early work in BSI in FY14 
• Furfural and HMF reduction correspond to lag 
• Transferred to BSI Project for continuous 

fermentation to obtain high yield and rate 
• Cleanup ongoing to overcome rate limitations 
• Ongoing: transcriptomics, proteomics, 

metabolomics, metabolic flux analysis 
• Similar work ongoing in B. succiniciproducens  
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Metabolic Engineering for Improved SA Biosynthesis 

Genetic tools will enable two 
parallel approaches to 
enhance flux to succinate: 
 
• Overexpression of succinate 

biosynthetic components (green 
arrows) 
 

• Down-regulation and/or 
knockout of competitive 
fermentation pathways: lactate, 
acetate, formate, and ethanol 
(red arrows) 

Apply genetic 
tools for strain 
engineering 

Image from S. Vaswani, 2010 
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Relevance 
This project is essential for 2017 HC fuel cost targets of $5/gge 
Key MYPP areas targeted by the Biological 
Upgrading of Sugars Project: 

Catalyst Efficiency 
- Developing efficient bio-catalysts 

to produce advanced fuels and 
chemicals 

- Improvement in titer, rate, yield 
key to economic viability 

Biochemical Conversion Process 
Integration 
- Coupling process considerations 

with organism development 
- Working with BSI task to iterate 

on fermentation needs and 
organism modifications/evolution 

Cleanup/Separation 
- Elucidating inhibitor effects on 

biocatalysts and downstream 
processing 

Key Stakeholders and Impacts: 

- Industrial and academic research focused on 
carbohydrate utilization in both HC fuel 
production and co-product manufacturing 
including chemical and polymer precursors 
from biomass 

- Will enable demonstration of C5-rich stream to 
chemicals in a scalable manner 

- Co-products impact the “Whole Barrel of Oil”  

- Portfolio of chemicals will diversify and 
accelerate development of the biomass value 
chain 

- Significant amounts of peer-reviewed science and 
IP will be generated from this work 

- Methods to upgrade sugars to organics acids can 
be leveraged well beyond succinic acid 
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Future Work 
Fatty Acid Production  
• Define 2-3 strains by end of FY15 with BSI  
• Target a “final” strain by end of FY16 
• 0.4 g/L/hr rate, 60% lipid content, and a 0.27 

g/g yield on C6-enriched sugars 

Succinic Acid Production 
• Down-select strain by end of FY15 with BSI 
• Target a “final” strain by end of FY16 
• Target: 2 g/L/hr, 0.795 g/g yield on C5-

enriched sugars 

2017 Demonstration 
Sugars 

Fuels Chemicals 

Lignin 
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Future Work 
Fatty Acid Production  
• Define 2-3 strains by end of FY15 with BSI  
• Target a “final” strain by end of FY16 
• 0.4 g/L/hr rate, 60% lipid content, and a 0.27 

g/g yield on C6-enriched sugars 

Succinic Acid Production 
• Down-select strain by end of FY15 with BSI 
• Target a “final” strain by end of FY16 
• Target: 2 g/L/hr, 0.795 g/g yield on C5-

enriched sugars 

2017 Demonstration 
Sugars 

Fuels Chemicals 

Lignin 

Towards 2022 demonstration 
• Emphasize step changes in lipid recovery through cell 

wall engineering and improved carbon flux  
• Explore fuel precursors with higher C-efficiency pathways 
• Divert more carbon to fuels through more efficient strains 

Towards 2022 
Sugars 

Fuels Chemicals 

Lignin 
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Summary 
1) Approach:  

– Develop oleaginous yeast for lipid production for renewable diesel blends from C6-rich streams 
– Develop example co-product train (succinic acid) from C5-rich streams from dilute-acid pretreatment 

 

2) Technical accomplishments (4 months of work thus far) 
– Screening large collection of oleaginous yeast in a self-consistent manner 
– Demonstrated ability to rapidly evolve L. starkeyi strains towards higher lipid production 
– Developed a HTP method for screening for gene candidates for lipid production in a model system 
– Demonstrated high yields of succinic acid on process-relevant hydrolysate 
– Identified multiple inhibitors that cause a lag phase in A. succinogenes growth and SA production 
– Metabolic engineering in progress for both FA and SA industrial production hosts 

 

3) Relevance 
– Directly impacts the 2017 and 2022 HC fuel cost target demonstrations through strain development 
– Addresses Whole Barrel of Oil Initiative and bolsters the biomass value chain 

 

4) Critical success factors and challenges 
– Economic and sustainable production of co-products, high yields of FAs and products needed 

 

5) Future work: 
– Continue all fronts towards down-selection of strains for 2017 demonstration, partial transition of efforts 

to 2022 targets in mid- to late-FY16 
 

6) Technology transfer:  
– Initiating contact with industry to build commercialization path for both fuel and co-product trains 
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Acronyms 

• FA: Fatty Acid 
• LCA: Life-Cycle Analysis 
• NHEJ: Non Homologous End Joining 
• SA: Succinic Acid 
• TEA: Techno-Economic Analysis 
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L. starkeyi: Initial strain for engineering  Engineered
Strains 

Strain Highlights : 
• Very high lipid productivities and titers 
• Strain NRRL Y-11557 genome sequenced (Tom Jeffries/JGI) 
• DNA Transformation established (Calvey et al. 2014) 

Initial Genetic Tool Development goals: 
• Increasing the genetic engineer-ability: Disruption of Ku70/80 genes should increase the 

efficiency of gene targeting by eliminating NHEJ for DNA repair 
• Currently screening hundreds of transformants to identify ku70 deletion mutants 

Transformation Selection Counter Selection 

Reusable selectable/counter-selectable marker: Generated random mutant ura3 
auxotrophic strains and are screening transformants for “clean” deletions to enable marker 
recycling: 
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Replicative plasmid (pLGZ920) 
obtained for facile gene 
expression  
- Complete plasmid re-sequenced to 

facilitate construct design 

 
Efficient electroporation 
transformation method developed  
- 9 x 104 cfu/µg plasmid 
- Sufficient for plasmid transformation 

and good starting point for linear 
DNA transformation (for gene 
knockout) 
 

Similar tools in place for B. 
succiniciproducens 

Genetic Tool Development in A. succinogenes 
Develop/impr
ove genetic 

tools 

Image from JG Zeikus et al. 
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A. succinogenes -omic Analyses 

Identify promoters across an 
array of expression levels 
• Facilitate fined-tuned expression of 

strain-engineering targets 
 

Comparative analyses between 
solution state and biofilm 
(production) state 
• Identify novel targets for induction 

of biofilm formation and temporal 
regulation of succinate biosynthesis  

Nature Reviews Genetics 10, 57-63 

Develop/impr
ove genetic 

tools 
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