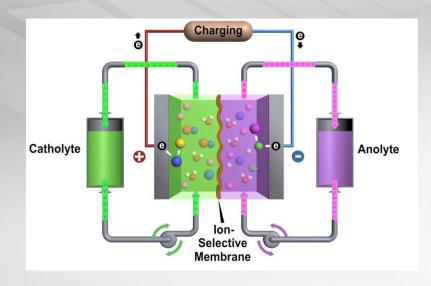


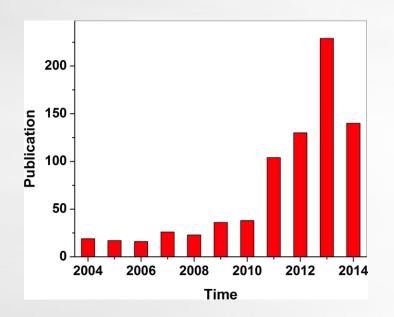
Next Generation Aqueous Redox Flow Battery Development

<u>Wei Wang</u>, Bin Li, Zimin Nie, Xiaoliang Wei, Murugesan Vijayakumar, Guosheng Li, Ed Thomsen, David Reed, Kerry Meinhardt, and Vincent Sprenkle

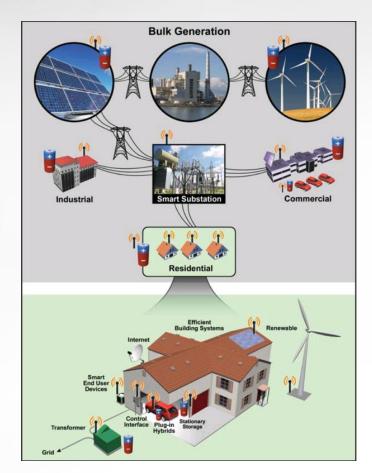
Pacific Northwest National Laboratory Electrochemical Materials and Systems

DOE Office of Electricity Energy Storage Program – Imre Gyuk Program Manager.


OE Energy Storage Systems Program Review


September 16-19th, 2014

Redox flow batteries (RFB)



Proudly Operated by Battelle Since 1965

Applications

An integrated approach to advance the RFB technology

Proudly Operated by Battelle Since 1965

Novel electrolyte

- Solvation chemistry study
- Improved stability and energy density
- New redox chemistries
- ♦ L. Li, etc. AEM 2011,
- ♦ W. Wang, etc. EES 2
- ♦ W. Wang, etc. AEM
- 2 patents, 4 patent

High perform and transport

- New membrane/se
- Membrane fouling r
- Ion transport study
- ♦ X. Wei, etc. AEM 2013, 1215-1220
- ♦ Q. Luo, etc. ChemSusChem 2013, 268
- ♦ B. Li, etc. ChemSusChem **2014**, 577
- 1 patent applications

Advanced electrode

- New electrode materials and structure
- Powerful catalyst

Flow stack R&D

- > Flow field design
- System integration and analysis
- ♦ S. Kim, etc. *JPS.* **2013**, 300

o.lett. **2013**, 1330-1335

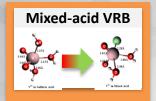
p.lett. **2014**, 158-165

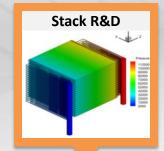
cations

leous RFB

redox chemistries r non-ageuous systems

- new electrode
- ♦ W. Wang, etc. *ChemComm.* **2012**, 6669
- ♦ X. Wei, etc. AEM, in press, 2014
- ♦ X. Wei, etc. AM, in press, 2014
- 4 patent applications





Review of RFB R&D at PNNL

Proudly Operated by Battelle Since 1965

MVRB License UET Company X

MVRB License
Wattjoule
Patents granted

Discovery Deployment

IP

R&D

Demo

License: UET/ X
/Aartha/Wattjoule

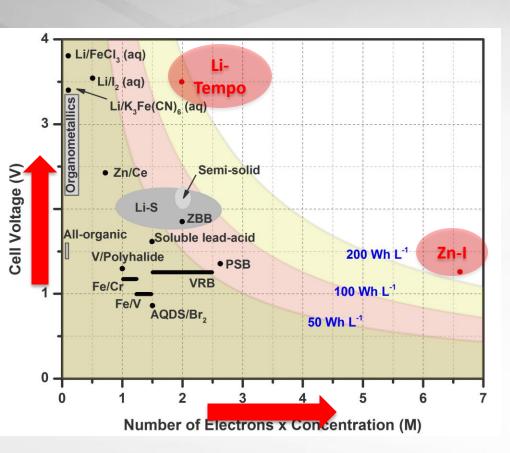
Program start

Paper published

Fe-V License Aartha USA New Chemistry

What's next?

Major Challenge of the current RFB technology: low energy density


120MWh system, peak power ~15MW. Each tank holds 1800m³ of electrolyte.

- Large form factor/footprint
- Limited application

How to design a high energy RFB?

 $E = \frac{NC_a FV}{n}$

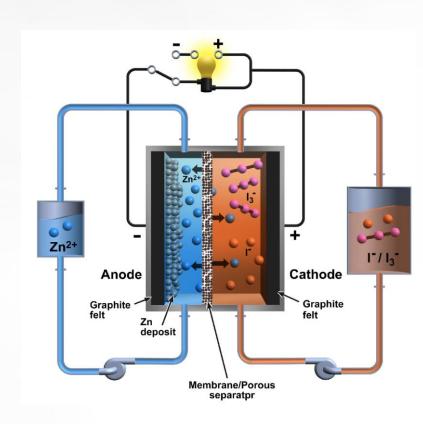
- E, system energy density based on the electrolyte composition and volumesN, the number of electrons involved in the rede
- reaction *F*, Faraday constant (26.8 Ah mol⁻¹)
- C_a , Max concentration of active redox species
- V, Voltage of the cell
- *n*, number of electrolyte tanks
- Hybrid flow battery design
- Ambipolar electrolyteBoth anion and cation are active species.
- Bifunctional electrolyte
 Active species can act as charge carrier.

High energy density Zn-Polyiodide aqueous RFB

Solubility of ZnI_2 is 7M in water \rightarrow theoretical energy density ~322Wh/L

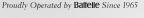
Identify high solubility redox active species

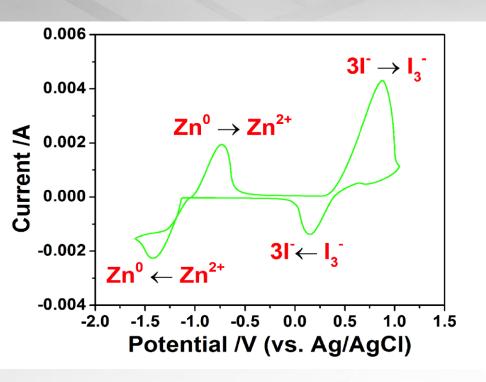
$$I_2(s) + I^- \longleftrightarrow I_3^- \qquad K \gg 720 \pm 10(298K)$$

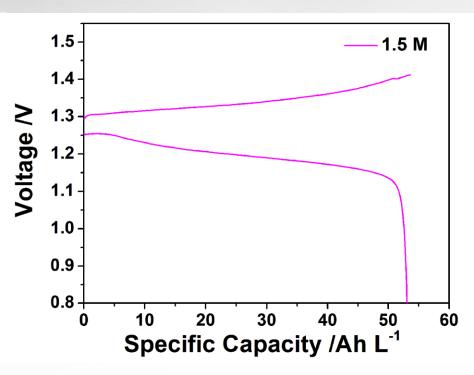

Positive:
$$3I^{-} \xleftarrow{Charge} \longrightarrow I_{3}^{-} + 2e^{-}(E_{0} = 0.536V)$$

Negative: $Zn^{2+} + 2e^{-} \xleftarrow{Charge} \longrightarrow Zn(E_{0} = -0.7626V)$

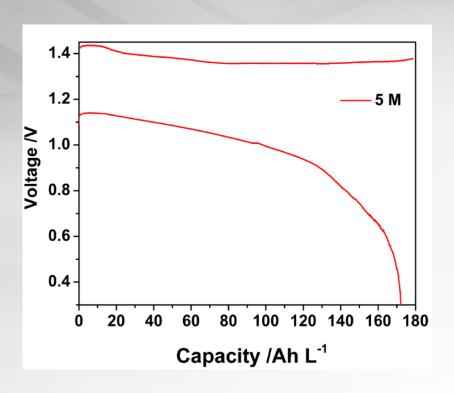
Overall: $Zn^{2+} + 3I^{-} \xleftarrow{Discharge} \longrightarrow Zn + I_{3}^{-}(E_{0} = 1.2986V)$

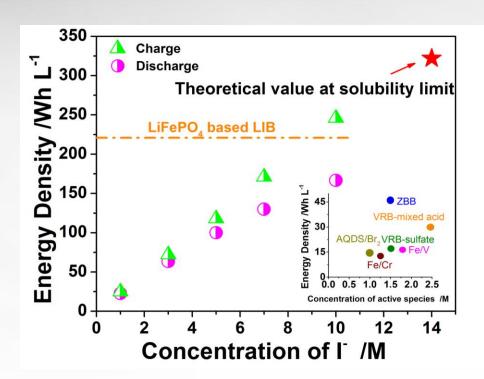

Characteristics of the Zn-I_x RFB


- ➤ Ambipolar electrolyte
- ➤ Bifunctional electrolyte
- > High energy density
- ➤ High safety: PH value: 3~4
 No strong acid
 No hazardous materials



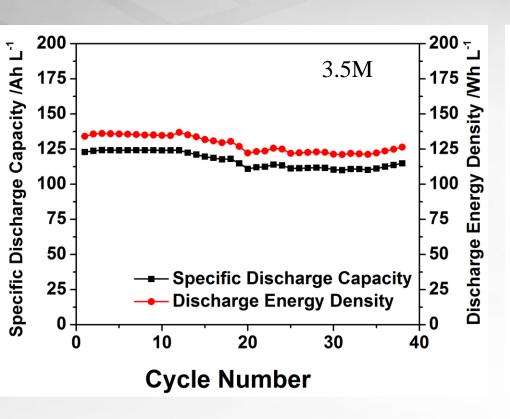
Electrochemical performance


CV of 0.085 M ZnI₂ on a glassy carbon electrode at the scan rate of 50 mV s⁻¹.

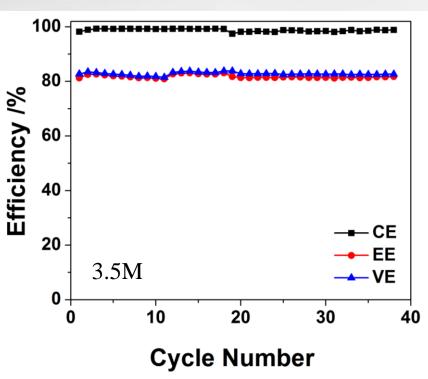

Typical charge-discharge curves at 1.5 M ZnI₂ at a current density of 20 mA cm⁻².

Electrochemical performance

Proudly Operated by Battelle Since 1965

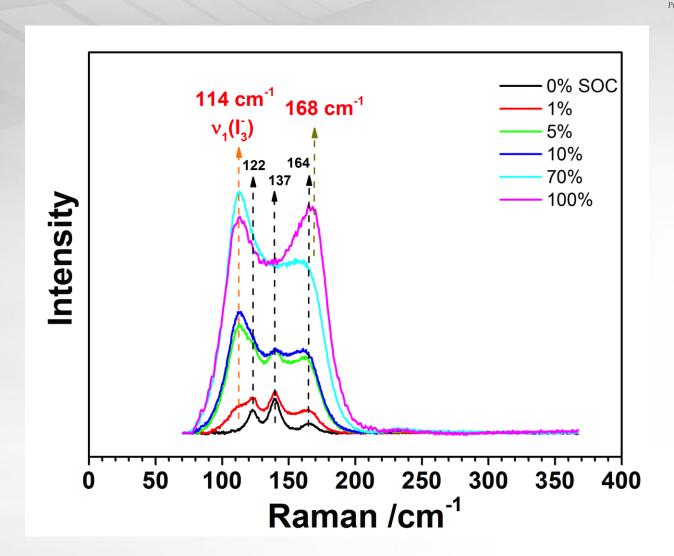

Charge/discharge curves for the cell with 5.0 M ZnI₂ and Nafion 115 as membranes operated at the current density of 5 mA cm⁻².

The charge and discharge energy density as a function of the concentration of I⁻. The inset lists concentration vs. energy density of several current aqueous redox flow battery chemistries for comparison.


Cycling performance

Proudly Operated by Battelle Since 1965

Capacities and energy density of the cell with 3.5 M ZnI₂ and Nafion 115 as membranes under the current density of 10 mA cm⁻².



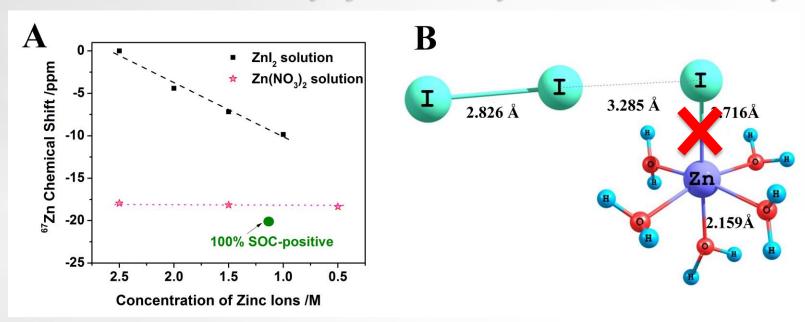
Efficiencies of the cell with 3.5 M ZnI₂ and Nafion 115 as membranes under the current density of 10 mA cm⁻².

Polyiodide species in the catholyte

Proudly Operated by Battelle Since 1965

Raman spectra of catholytes at different state of charges (SOCs) from 0 to 100% SOC.

Temperature stability of the catholyte



Proudly Operated by Battelle Since 1965

Temperature stability (off-line) of 100% SOC catholytes

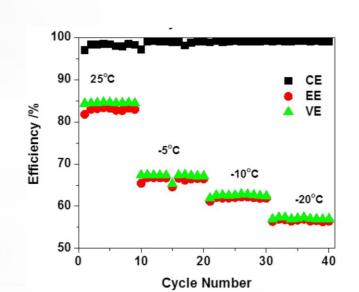
Znl ₂ (M)	50°C	25°C	0°C	-10°C	-20°C
3.5	stable	stable	ppt	ppt	ppt
2.5	stable	stable	ppt	ppt	ppt

NMR and DFT study of the catholyte solution chemistry



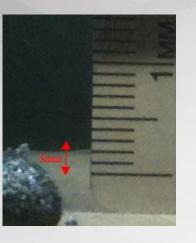
$$[Zn^{2+}.I_3^-.5H_2O]^+ \leftrightarrow [Zn^{2+}.I^-.5H_2O]^+ + I_2(s)$$

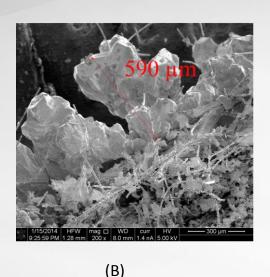
Stablize the catholyte through coordination chemistry



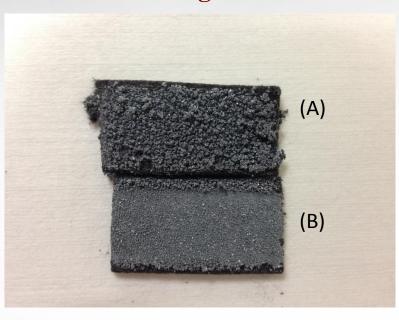
Proudly Operated by Battelle Since 1965

Temperature stability with alcohol additives


	Znl ₂ (M)	Vol% EtOH	50°C	25°C	0°C	-10°C	-20°C
	3.5	25	stable	stable	stable	stable	stable
		25 (EG)	stable	stable	stable	stable	stable
1	2.5	25	stable	stable	stable	stable	stable



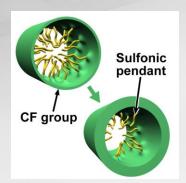
Mitigation of Zinc dendrite growth

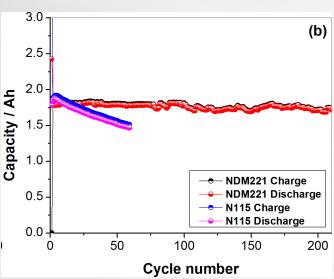

Dendrite growth in the flowing electrolyte

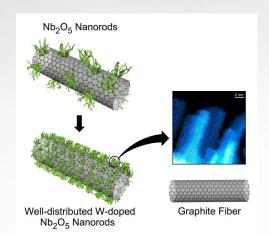
Morphologies of zinc dendrites after charge for the cells with 3.5 M ZnI₂ operated at the current density of 10 mA cm⁻² (**A**) in the static cell and (**B**) the flow rate of 100 mL min⁻¹.

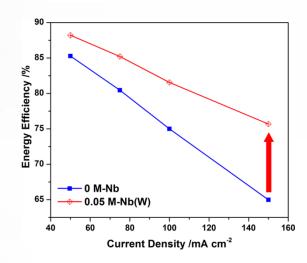
Alcohol complexing ameliorate the dendrite growth

Morphologies of zinc dendrites after charge (**A**) without EtOH and (**B**) with EtOH in the electrolytes.


(A)


Development on Membrane and Electrode


Proudly Operated by Battelle Since 1965


Development of high selective PFSA membrane with Dupont

Development of advanced RFB electrode

Please check out our membrane and electrode research at poster

Summary

- High energy density Zn-I RFB (>150Wh/L) has been designed and demonstrated
- Alcohol molecules are found to complex with the Zn ions, which improve the temperature stability and ameliorate Zn dendrite growth.

Future work

Investigation of the Zn dendrite formation mechanism and development of mitigation methods.

Acknowledgements

- ➤ US Department of Energy's Office of Electricity Delivery and Reliability Dr. Imre Gyuk, Energy Storage Program Manager.
- Pacific Northwest National Laboratory is a multi-program national laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC05-76RL01830.