Na-ion Anode Development

Donghai Wang
The Pennsylvania State University
September 17, 2014

Sodium-ion batteries could be cheaper than Li-ion batteries, and use a much more abundant resource.

1,000

500

CLI2CO3 price US\$/year

BLi2CO3 ton/year

Year

10,000

5,000

CLCE ton/year

Phosphorus is a promising material for sodium-ion batteries thanks to its high capacity and low cost.

Issues

Low electrical conductivity (1×10⁻¹⁴ S/cm)

Large volume expansion

Particle pulverization

Loss of electrical contract

Unstable SEI

.

Element	Max. Na content in Na _x X	Vol. ratio of Na _x X/X
Na	_	_
С	$< NaC_6$	< 2%
Si	NaSi	130%
Sn	$Na_{3.75}Sn$	525%
Sb	Na₃Sb	390%
Pb	Na _{3.75} Pb	487%
P	Na ₃ P	491 %

Graphene-nanosheet-wrapped Phosphorous Composite Anode

- (1) a facile, low-energy ball milling technique was adopted (400 rpm for 1000 min).
- (2) Low cost commercial red phosphorus and graphene stacks as raw materials.

Characterization

- (1) Amorphous structure structure of the P/G composite.
- (2) Graphenen stacks were exfoliated to graphene nanosheets driven by mechanical shearing upon ball-milling.

Morphology

- (1) The graphene nanosheets can form a conductive matrix within the composite.
- (2) The large bulk phosphorus were grinded into microscale or nanoscale particles.

Chemical Interaction between Phosphorous and Graphene Sheets

Formation of P-O-C bond between phosphours and graphene nanosheets via ball-milling

The graphene nanosheets can chemically bind with phosphorus during milling process, which facilitates the intimate contact of graphene nanosheets with phosphorus particles.

Chemical Interaction between Phosphorous and Graphene Sheets

Cyclic voltammetry and voltage profiles indicate stable electrochemical behavior with cycling.

I) SEI formation
 II) Na_xP formation upon sodiation
 III-V) Na₂P, NaP, and NaP₇ formation upon desodiation

A high capacity and coulombic efficiency are achieved using graphene-wrapped phosphorous.

The rate performance for graphene-wrapped phosphorous was also exceptional.

Effect of different graphene content and chemical bonding in the P/graphene composite

- (1) With the increasing Graphene content, the electrochemical performance are significantly improved.
- (2) Chemical bonding also plays an important role on the battery performance.

Fluoroethylene carbonate (FEC) can help form a stable SEI layer to improve cycling stability

FEC-Free

FEC-Containing

Optimization of Electrolyte (1M NaClO₄ in EC/DEC+ 10wt%

FEC)

Significant Na deposition Particles Un-observable

No Na metal deposition

Particles Observable

Using FTIR, more robust SEI species were found to form with FEC.

Both have some ROCO₂Na, RCO₂Na

FEC-containing has more:

- RCO₂Na
- Polycarbonates

FEC-free has more:

- RONa
- Monocarbonate
 ROCO₂Na (possible)
- Ester or alkyl carbonate

Post-cycling characterization

- (1) The almost overlapped EIS spectra indicate a good manitance of conducting electrical contact and relatively stable SEI.
- (2) The graphene still have a uniform distribution in the composite and provides a good conducting matrix upon cycling.

Summary

- Graphene-nanosheet-wrapped phosphorus composite anode for sodiumion batteries via a simple ball-milling approach with low-cost precursors of red phosphorous and graphene stacks
- 2) The featured structure and chemical bonding (P-O-C) between P and G play an important role on the electrochemical performance of P-Based anode for SIB.
- 3) More stable SEI formation using FEC

Progress toward sodium-ion batteries For stationary energy storage

Acknowledgements

We would like to acknowledge financial support from the U.S. Department of Energy's (DOE's) Office of Electricity Delivery & Energy Reliability (OE) (under Contract No. 57558).

Penn State University

Zhaoxin Yu Jiangxuan Song Mikhail Gordin Michael Regula

Dr. Xiaolin Li

Dr. Vincent Sprenkle

