
Exceptional service in the national interest

energy.sandia.gov

Energy Storage Demonstration and Analysis 09/19/2014

Acknowledgements

Dr. Imre Gyuk, Program Manager of the Electrical Energy Storage Program, for their support and funding of the Energy Storage Program.

Projects

Mission: Advance energy storage systems in cost effectiveness, performance, safety and reliability

- Feasibility Study
 - Cordova, Alaska
- Factory Acceptance Testing, Commissioning and Analysis
 - Puget Sound Energy
- Application and Optimization
 - Base Camp Integration Laboratory

Cordova Hydroelectric/Energy Storage Feasibility Study

Players

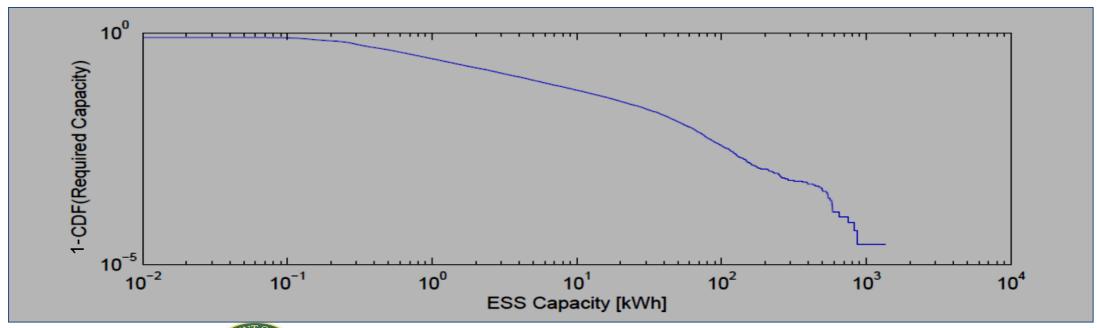
- Cordova Electric Cooperative (CEC)
- DOE/OE and Sandia National Labs (SNL)
- Alaska Center for Energy and Power (ACEP)

Issue

- Expansion of fishing industry has exceeded the supply capability of the 8.5MW hydroelectric plants which supplemental power demand is met with diesel generation.
- Supplemental power by diesel generation is only needed for minutes
- Hydro units are run with a 500kW reserve which energy storage can free up and defer diesel generation
- ACEP with SNL and has developed an energy balance model to determine feasibility of an energy storage system installed on the Cordova system

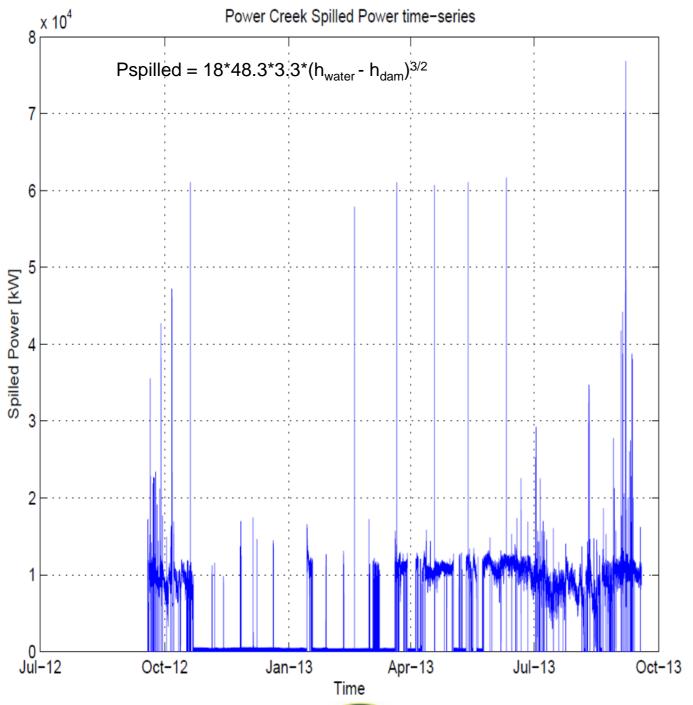
Cordova Electrical System Overview Mational Substances

- Member-owned COOP serving 2,000 Customers with summer load peak of 8.4 MW
- **Generation Assets**
 - Pump Creek: 2 hydro units, 3 MW each
 - Humpback Creek: 2 hydro units, 1.25 MW each
 - Orca Power Plant: 5 diesel units, Total of 9.8 MW
- Distribution system is underground
- SCADA system records over 200 channels of systems data at 1 second intervals with over 10 years worth of data



Results of Energy Balance Model

- Total hours per year within 500kW of spinning reserve while running on hydro power was 215.9167 hours
- Total displaceable diesel hours is 185.4589 hours
- Assuming electricity cost of \$0.45/kWh, economic value of energy storage systems is ~\$54,640/year
- Power class energy storage system will not have significant economic benefit for Cordova used for diesel displacement



Summary/Conclusions

- Recovering water spilled during times when load demand is below the hydropower capacity has a beneficial impact
- Initial economic benefit of \$750,000/year off-setting thermal loads. (~14x better return)

Future Tasks

- New Energy Balance Model for Capturing Water Spilled Through
 - Distributed thermal storage units
 - Electrochemical energy storage
- Develop Dynamic Model for Energy Storage Based Off Energy Balance Model
 - Size Specifications
 - Control of single or multiple devices
- Use developed process and model for replication which will be through a partnership with DOE Indian Affairs

Puget Sound Energy Flow Battery

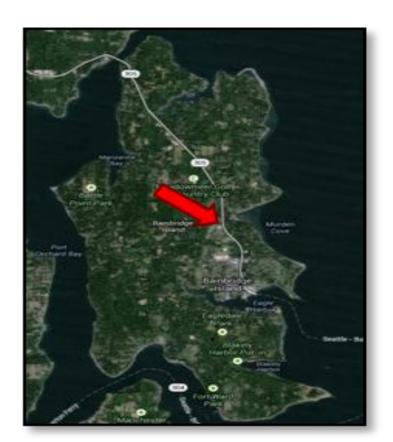
Energy Storage System

Players

- Puget Sound Energy (PSE)
- Bonneville Power Administration (BPA)
- Primus Power
- DOE/OE and Sandia National Labs (SNL)
- Pacific Northwest National Laboratory (PNNL)

Project Objectives

- Installing and analyzing an innovative 0.5 MW / 1.0 MWh Zinc Bromide flow battery system from Primus Power
- Develop best practices for commissioning an energy storage system
- Assessing and demonstrating the benefits of energy storage on the distribution grid



Current Status and Future Effort

Currently

- Developing Factory Acceptance Test (FAT) document with PSE as the lead
- Incorporating Sandia's lesson learned document for commissioning

Future

- Develop Commissioning Tests, which Include
 - Field or Operation Acceptance Test
 - Functional Acceptance Test
- Performance Evaluation
 - Team will monitor installed energy storage system for a period of time to evaluate performance for peak shaving, renewable integration and uninterruptible power supply based on PNNL performance metrics document
 - Change Application of energy storage system based off performance evaluation

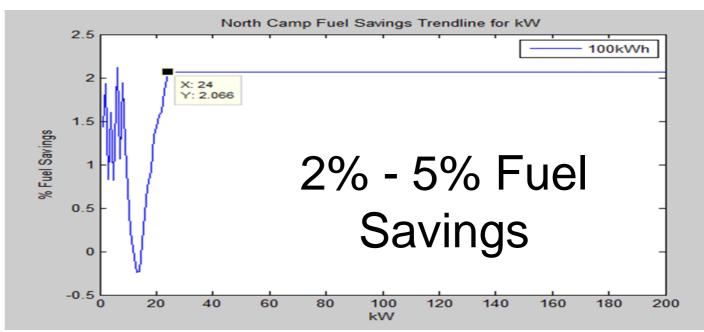
10

Energy Storage Incorporated Into a Forward Operating Base

- Players
 - Army Program Manager Force Sustainment Systems (PM FSS)
 - GS Battery
 - Raytheon/Ktech
 - MilSpray
 - Princeton Power Systems
 - DOE/OE and Sandia National Labs (SNL)

Project Objectives

 Analyze energy storage's capability to increase the reliability of the electrical power microgrid at a FOB while decreasing the fossil fuel consumption of the system


Accomplishments at Energy Storage

Test Pad (ESTP)

- RFI Issued based on Army Regulations and Sandia Applications
 - Milspray, Lead Acid
 - Princeton Power, Li-Ion
 - Raytheon/Ktech, Zinc Bromide
 - GS Battery, Lead Acid
- Completed Operation Analysis at Sandia ESTP
 - Published SAND reports of testing results
- Developed predictive fuel savings model

Accomplishments at BCIL

- Completed First Round of Functional Analysis at Base Camp Integration Laboratory (BCIL)
 - Princeton Power and GS Battery energy storage system completed
 - Princeton Power sent to MIT Lincoln Labs (MIT/LL) for further evaluation

Current Status and Future Efforts

GS Battery Rendering of RESCU unit with PV

 GS Battery HES RESCU unit is being engineered to be hardened to increase capability to grid forming

Future

- Analyze GS Battery HES RESCU unit at BCIL with new grid forming capability
- Pair energy storage system with renewable energy and evaluate
- Scale up existing energy storage systems for larger base camps

Questions?

Benjamin Schenkman blschen@sandia.gov (505) 284-5883

Reference: SAND2014-17528 PE

Additional Acknowledgements

- Dan Borneo
 - drborne@sandia.gov
- Thomas Merrill
 - Thomas.a.merrill8.civ@mail.mil
- Laura Feinstein
 - Laura.feinstein@pse.com
- Andrew Marshall
 - Andrew.marshall@primuspower.com
- Patrick Balducci
 - Patrick.Balducci@pnnl.com
- Vilayanur Viswanathan
 - Vilayanur.viswanathan@pnnl.com
- Abbas Akhil
 - abbas@revtx.com
- Marc Mueller-Stoffels
 - mmuellerstoffels@alaska.edu

