DOE Peer Review Iron Based Flow Batteries for Low Cost, Grid Level Energy Storage

Jesse S. Wainright

Department of Chemical Engineering Great Lakes Energy Institute Cleveland, Ohio

26 September

The All-Iron Flow Battery

Purpose: Develop an efficient, cost-effective grid level storage capability based on iron

- Low cost electrolyte (\$7/kWh)
- Domestic supply of Fe
- Environmentally benign, mild pH, non-toxic
- Cap cost below 150/kW if c.d. > 100 mA/cm²

$$Fe^{2+} \rightarrow Fe^{3+} + e^{-} + 0.77 \text{ V}$$

 $Fe^{2+} + 2e^{-} \rightarrow Fe^{0} - 0.41 \text{ V}$

Technical Challenges

- High plating efficiency
 - Minimize H2 evolution
 - pH, Ligand chemistry
- High Plating Density (Ah/cm²)
 - Electrode Structures
- High Current Density

Research Plan

Year 1: COMPLETE

- Ligand Screening demonstrated [Fe⁺³] >0.5M @ pH>2
- H₂ evolution suppression effect of pH, anions evaluated

Year 2: COMPLETE

- Effect of Ligands on Fe plating efficiency, morphology
 - Plating density >500 mAh/cm² demonstrated
 > 99% coulombic efficiency

Year 3: COMPLETE

- Negative Electrode Design optimize plating capacity, power density
- Separator studies Fe⁺³, Ligand crossover

Year 4: in progress

- Extended cycle testing / scale-up of all-Fe battery
- Alternative chemistries

Hybrid Electrode Designs

Porous, Non-conductive spacer

- Acceptable mass transfer
 - $i_L \approx 200 \text{ mA/cm}^2$
- Large plating density
 - 200 500 mAh/cm²

Iron Deposit

Dark spots are Dendrites

- Plating at Current Collector
- Dendrite growth is an issue
- Kinetic and Ohmic Losses significant

Hybrid Electrode Designs

Porous, Conductive Felt

- Plating near membrane
- Increased mass transfer
 - $i_L \approx 1,000 \text{ mA/cm}^2$
- Acceptable plating density
 - 100 200 mAh/cm²
 - 1 2 hr cycles feasible
- Dendrite growth not an issue
- Kinetic & Ohmic Losses minimized
 - High surface area electrode
 - Electrically conductive up to membrane
- 70% VE, 95% CE

Iron Deposit

Crossover Measurements

Experimental Parameters

- Gradient in Fe⁺² or Fe⁺³, not both
- Na⁺ gradient in opp. direction
- Constant anion concentration
- Constant proton concentration (1M)
- Fe concentration probed by voltammetry
- Quasi-steady state solution
 - linear gradient across membrane
 - constant partition coefficient
- Oxidation of Fe⁺² by air included

Fe³⁺ crossover in Nafion 117

•
$$D_{\text{eff}} = 3.2 \text{ x} 10^{-7} \text{ cm}^2/\text{s}$$

Iron Crossover Impact on Battery Size / Efficiency

Transport of Fe⁺³ to negative Reaction w/ Fe^o produces Fe⁺²

Steady State after ≈20 cycles

Coulombic efficiency loss

• due to reaction of Fe^o and Fe⁺³

Capacity Loss

- build-up of Fe⁺² on negative side
- decrease in Fe⁺² on positive side

Losses mitigated > 200 mA/cm²

Battery Chemistry - looking ahead

Iron - "Double Redox"

Use Ligands to Shift Fe+2/+3 Redox Potential

- True Flow Battery
 - All reactants in solution
- Eliminates H₂ Evolution
- Cost of Ligands
 - High concentrations required
- Solubility of Fe:Ligand complexes
 - pH dependence
- Lower Cell Potential
 - Impact on Voltaic Efficiency

Battery Chemistry - looking ahead

All - Copper $(Cu^0 / Cu^{+1} / Cu^{+2})$

Electrochemistry of Cu changes dramatically w/ excess halide ions

- Form Cu 4X⁻ complexes
- Cu⁺¹ stabilized, much more soluble
 - $mM \text{ to } > 1 \text{ M w} / 10:1 \text{ Cl}^-: \text{Cu}^+$

Advantages of Cu-Halide chemistry:

- Eliminates H₂ evolution,
- More facile plating reaction
 - But only 1e- per Cu, not 2
- Acid electrolyte possible (pH <1)
 - High ionic conductivity
- Cu costs higher, but not prohibitive
 - Need low overpotentials to offset lower cell voltage
- Patent application submitted in 2014

$$Cu^{+} \rightarrow Cu^{2+} + e^{-} + 0.35 - +0.5 \text{ V}$$

 $Cu^{+} + e^{-} \rightarrow Cu^{0} - 0.25 \text{V}$

All - Cu Battery Efficiencies

		Voltaic (%)	Coulombic (%)
2nd	Nafion	67.8	98.8
Cycle	Daramic	71.3	92.5
5th Cycle	Nafion	67.9	97.8
	Daramic	72.6	92.3

5% - 80% SOC ±100 mA/cm² OCV = 0.75V100 mAh/cm²

CWRU Iron Flow Battery Project

Dr. Krista Hawthorne completed her Ph.D. in July 2014

Papers related to her dissertation:

- "Studies of Iron-Ligand Complexes for an All-Iron Flow Battery Application"
 - J. Electrochem. Soc., **161** (10) A1662-A1671 (2014)
- "Maximizing plating density and efficiency for a negative deposition reaction in a flow battery"
 - J. Power Sources **269**, 216 (2014)
- "An Investigation into Factors Affecting the Iron Plating Reaction for an All-Iron Flow Battery"
 - Submitted to J. Electrochem. Soc.

CWRU Iron Flow Battery Project

- Draft papers in progress:
- "Iron Crossover in Flow Battery Separators"
 - Part 1: Effective Diffusivity Measurements
 - Part 2: Optimizing battery performance and cost
 - T. Petek, 1st author, (J. Electrochem. Soc.)
- "In-Line Reference Electrodes in Flow Batteries with Porous and Slurry Electrodes"
 - N. Hoyt, 1st author, (J. Electrochem. Soc.)
- "Plating utilization of carbon felt in a hybrid flow battery"
 - N. Hoyt, 1st author (J. Power Sources)

Electrochemical Engineering and Energy Labs @ CWRU

Principal Investigators

- Robert F. Savinell, PhD
- Jesse S. Wainright, PhD

Research Staff

- Mirko Antloga
- Nicholas Sinclair
- Nathaniel Hoyt, PhD
- Enoch Nagelli, PhD

Doctoral Candidates

- Ismailia Escalante-Garcia
- Krista Hawthorne
- Mallory Miller
- Tyler Petek
- Liz Freund
- Steve Selverston

U.S. DEPARTMENT OF

ENERG CHANGING WHAT'S POSSIBLE

Office of Electricity

Fundamentals

- Electrocatalysis and kinetics
- Electrode and cell design
- Membrane transport processes
- Mathematical modeling

Device Innovation

- Energy storage and generation
- Chemical synthesis and separations
- Electrodes for neural stimulation
- Device prototyping and cost analysis

Thank you!

Questions?