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The All-Iron Flow Battery 
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Purpose: Develop an efficient, cost-effective grid level storage 
  capability based on iron 
• Low cost electrolyte ($7/kWh) 
• Domestic supply of Fe 
• Environmentally benign, mild pH, non-toxic 
• Cap cost below $150/kW if c.d. > 100 mA/cm2 

Technical Challenges 
• High plating efficiency 

• Minimize H2 evolution 
• pH, Ligand chemistry 

• High Plating Density (Ah/cm2) 
• Electrode Structures 

• High Current Density 

Fe2+ 
 Fe3+ +e- +0.77 V 

Fe2+  +2e-  Fe0 -0.41V 



Research Plan 
Year 1:   COMPLETE 
• Ligand Screening – demonstrated [Fe+3] >0.5M @ pH>2 
• H2 evolution suppression – effect of pH, anions evaluated 

 
Year 2:  COMPLETE 
• Effect of Ligands on Fe plating efficiency, morphology 

• Plating density >500 mAh/cm2  demonstrated 
> 99% coulombic efficiency  

 
Year 3:  COMPLETE 
• Negative Electrode Design 

optimize plating capacity, power density 
• Separator studies – Fe+3, Ligand crossover 

 
Year 4: in progress 
• Extended cycle testing / scale-up of all-Fe battery 
• Alternative chemistries 
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Hybrid Electrode Designs 
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Porous, Non-conductive spacer 
• Acceptable mass transfer 

• iL ≈ 200 mA/cm2 

• Large plating density 
• 200 - 500 mAh/cm2 

Iron 
Deposit 

Dark spots are Dendrites 

• Plating at Current Collector 
• Dendrite growth is an issue 
• Kinetic and Ohmic Losses  

significant 



Hybrid Electrode Designs 
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Porous, Conductive Felt 
• Plating near membrane 
• Increased mass transfer 

• iL ≈ 1,000 mA/cm2 

• Acceptable plating density 
• 100 - 200 mAh/cm2 

• 1 - 2 hr cycles feasible 

• Dendrite growth not an issue 
• Kinetic & Ohmic Losses minimized 

• High surface area electrode 
• Electrically conductive up to 

membrane 

• 70% VE, 95% CE 
 

 

Iron 
Deposit 



Crossover Measurements 
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Fe3+ crossover in Nafion 117 

• Deff = 3.2 x10-7 cm2/s 

Experimental Parameters 
• Gradient in Fe+2 or Fe+3, not both 
• Na+ gradient in opp. direction 
• Constant anion concentration 
• Constant proton concentration (1M) 
• Fe concentration probed by 
voltammetry 
• Quasi-steady state solution 

• linear gradient across membrane 
• constant partition coefficient 

• Oxidation of Fe+2 by air included 
 

 



Iron Crossover  

 Impact on Battery Size /Efficiency 
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Transport of Fe+3 to negative 
Reaction w/ Fe0 produces Fe+2 

 
Steady State after  ≈20 cycles 
 
Coulombic efficiency loss 
• due to reaction of Fe0 and Fe+3 

 
Capacity Loss  
• build-up of Fe+2 on negative 

side 
• decrease in Fe+2 on positive 

side 
 
Losses mitigated > 200 mA/cm2 

 

Daramic, 2M Fe+2, full utilization  



Battery Chemistry – looking ahead 
Iron – “Double Redox” 

Use Ligands to Shift Fe+2/+3 Redox 
Potential 
 
• True Flow Battery –  

• All reactants in solution 
• Eliminates H2 Evolution 

 
 
• Cost of Ligands 

• High concentrations required 
• Solubility of Fe:Ligand complexes 

• pH dependence 
• Lower Cell Potential 

• Impact on Voltaic Efficiency 
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Battery Chemistry – looking ahead 
All – Copper   (Cu0 / Cu+1 / Cu+2)  

Electrochemistry of Cu changes 
dramatically w/ excess halide ions 
• Form Cu – 4X- complexes 
• Cu+1 stabilized, much more soluble 

• mM to > 1 M w/ 10:1 Cl-:Cu+ 

 
 Advantages of Cu-Halide chemistry : 
• Eliminates H2 evolution,  
• More facile plating reaction 

• But only 1e- per Cu, not 2  
• Acid electrolyte possible (pH <1) 

• High ionic conductivity 
• Cu costs higher, but not prohibitive 

• Need low overpotentials to offset lower 
cell voltage 

• Patent application submitted  in 2014 
 

 

Cu+ 
 Cu2+ +e-  +0.35 – +0.5 V 

Cu+  + e-  Cu0 -0.25V 



All - Cu Battery Efficiencies 

Voltaic (%) 
Coulombic 

(%) 

2nd 
Cycle 

Nafion 67.8 98.8 

Daramic 71.3 92.5 

5th 
Cycle 

Nafion 67.9 97.8 

Daramic 72.6 92.3 

5% - 80% SOC   OCV = 0.75V  
±100 mA/cm2   100 mAh/cm2 

 



Dr. Krista Hawthorne completed her Ph.D. in July 2014 

 

Papers related to her dissertation: 

• “Studies of Iron-Ligand Complexes for an All-Iron Flow Battery 
Application”  
▫ J. Electrochem. Soc., 161 (10) A1662-A1671 (2014) 

  

• “Maximizing plating density and efficiency for a negative deposition 
reaction in a flow battery”  
▫ J. Power Sources 269, 216 (2014) 

 

•  "An Investigation into Factors Affecting the Iron Plating Reaction for an 
All-Iron Flow Battery"  

▫ Submitted to J. Electrochem. Soc. 

 

 

 

CWRU Iron Flow Battery Project 



 

• Draft papers in progress: 

• “Iron Crossover in Flow Battery Separators” 

 Part 1: Effective Diffusivity Measurements 

 Part 2: Optimizing battery performance and cost  

  T. Petek, 1st author, (J. Electrochem. Soc.) 

 

• “In-Line Reference Electrodes in Flow Batteries with Porous and Slurry 
Electrodes” 

  N. Hoyt, 1st author, (J. Electrochem. Soc.) 

 

• “Plating utilization of carbon felt in a hybrid flow battery” 

▫ N. Hoyt, 1st author (J. Power Sources) 

 

 

 

 

 

CWRU Iron Flow Battery Project 



Electrochemical Engineering 

and Energy Labs @ CWRU 
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Principal Investigators 

• Robert F. Savinell, PhD 

• Jesse S. Wainright, PhD 

Research Staff 

• Mirko Antloga 

• Nicholas Sinclair 

• Nathaniel Hoyt, PhD 

• Enoch Nagelli, PhD 

Doctoral Candidates 

• Ismailia Escalante-Garcia 

• Krista Hawthorne 

• Mallory Miller 

• Tyler Petek 

• Liz Freund 

• Steve Selverston 

Fundamentals 
• Electrocatalysis and 

kinetics 
• Electrode and cell design 
• Membrane transport 

processes 
• Mathematical modeling 

Device Innovation 
• Energy storage and 

generation 
• Chemical synthesis and 

separations 
• Electrodes for neural 

stimulation 
• Device prototyping and 

cost analysis 
Office of Electricity 



Questions? 
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