

U.S. Department of Energy

WORKSHOP ON VALUATION OF BENEFITS AND COSTS OF DISTRIBUTED GENERATION

Inputs and Methods Affecting Estimates of Control/Grid Services Provided by Grid Operator to DET User

Carl Imhoff Pacific Northwest National Laboratory October 1, 2014

Introduction and Overview

- The previous sessions focused on the value of DETs could provide to the utility
 - Benefits of DETs are couched in terms of avoided costs for utility operations and infrastructure
- This session focuses on the value the grid provides the DET owner – an alternative way of looking at value
- Emerging new point of view; DET Owner
 - **Grid-POV**: the cost for the grid to supply those same services
 - This corresponds to a more traditional utility point-of-view
 - Many (but not all) of these values were discussed in previous sessions
 - DET-POV: the cost for a consumer with DET to self-supply the load, providing all services offered by the grid as if operated as an island
 - This "upside down" perspective proved useful in offering insights about additional values

Services Considered

Service		Description		
	1. Capacity & load shape	 Provide energy required to meet load in excess of DET supply Absorb excess energy supplied by DET after load is met (Lack of) load shape diversity 		
	2. Imbalance energy (short-term volatility)	 Provide or absorb energy for short-term load variations around load shape (Lack of) short-term load diversity 		
	3. Ramping	 Provide energy not supplied by DET due to DET's limited ramp rate Absorb excess energy supplied by DET due to DET's limited ramp rate 		
	4. Frequency regulation	Control system output so that (60 Hz) frequency is maintained		
	5. Transient stability	Inertia + primary frequency droop control		
	6. Voltage regulation	Control voltage within ANSI standards		
	7. Supply VARs	Supply reactive power needed for reactive loads		
	8. Reserve capacity	Spinning + operational reserve capacity for forced and planned DET outages		
	9. Maintenance	Responsibility and risk for maintenance of generation		
	10. Dispatch planning	Responsibility and risk for scheduling & control of generation		
	11. Capacity planning	Forecasting & capacity expansion planning		
	12. Fuel supply	• (Lack of) reduced fuel costs from bulk (wholesale) purchases, long-term contracts		
	13. Economies of scale	 (Lack of) ability to utilize generation only available in large sizes (e.g. nuclear) (Lack of) ability to access lower cost capital available to utilities 		
	14. Supply diversity	(Lack of) hedging and competition provided by diversity in generation resources		
	15. Access to remote renewables	• (Lack of) ability to use remote carbon-free resources (e.g., hydro, wind)		

Typical Values Considered

Additional Values to Consider (brought to light by DET-POV)

Commonly Considered Values Provided to DET by Grid

Service	Valuation	Methods & Issues
1. Capacity & load shape	 Cost of G, T, & D capacity to manage peak load Cost of supplying imbalance energy needs with bulk generation (wholesale market or production cost) 	 Industry practice well established for capacity Load composition complexity increasing; new efforts to capture behaviors of emerging power electronics etc. becoming of interest
2. Imbalance energy (short-term volatility)	 Energy cost of supplying regulation 	 Production cost modeling well established Recent work indicates data access challenges Including handling multiple owner issues etc. Emerging use of uncertainty in imbalance forecasting
3. Ramping	 Marginal cost of dispatched generation when mix changes due to ramp rate limitations 	 Ramping issues increase with increased DET penetration Wind ramp forecasting topic of much effort
4. Frequency regulation	 (Market) cost for regulation services, discounted by fraction used for area imbalance Additional power plant costs for primary frequency (droop) control Fuel & wear-and-tear costs for primary frequency control 	 Current practices well established Interconnections experiencing frequency response challenges

Commonly Considered Values Provided to DET by Grid from Two Points of View (cont.)

Service	Valuation	Methods & Issues
1. Transient stability	 Cost for transmission SCADA, EMS, PMUs, etc. used to provide transient stability Costs for power flow control, dynamic path ratings etc. 	 Detailed engineering studies to determine cost of reliability under high DET scenarios Emerging high resolution data resources emerging to enhance transient management; access a challenge
6. Voltage regulation	 Generation costs for supply required VARs, including losses Additional power plant & transmission EMS costs for controls needed to maintain voltage stability Fuel & power plant wear-and-tear costs for maintaining voltage stability Distribution voltage control systems & equip. (tap changers, voltage regulators, cap banks) 	 DET voltage impacts of high interest Performance of emerging smart inverter concepts need to be reflected in engineering study tools
7. Reserve capacity	 Spinning reserve (market) capacity & dispatch costs Non-spinning (replacement) capacity & dispatch costs Operational reserve capacity costs Fixed O&M costs for all reserve capacity 	Discussed earlier

Summary of Key Points

- 1. Bulk system services embedded in power costs (DET perspective) ... Emerging DET owners increasing their sophistication and interest in valuing grid services
- 2. Many bulk system valuation studies cross state boundaries, adding complexities; new efforts promising
- 3. DET futures make load more complex and active player in grid operations; load composition tools needed?
- 4. EMS / DMS tools moving to better reflect uncertainty; will improve operator ability to mitigate historic cost risks
- 5. Data access a barrier in current EIM efforts
- 6. Future reliability management for fast events (frequency response, transients) increasingly dependent on new monitoring concepts
 - 1. New (multiple) opportunities for improved leverage of DET ... How to value?
 - 2. Challenges in data access, data management & cost allocation