

U.S. Department of Energy

WORKSHOP ON VALUATION OF BENEFITS AND COSTS OF DISTRIBUTED GENERATION

Estimating the Costs and Benefits of Energy from Distributed Energy Technologies (DETs)

Ryan Wiser and Andrew Mills Lawrence Berkeley National Laboratory September 30, 2014

- Definition of energy value and potential overlap with other values
- Methods used to estimate energy value

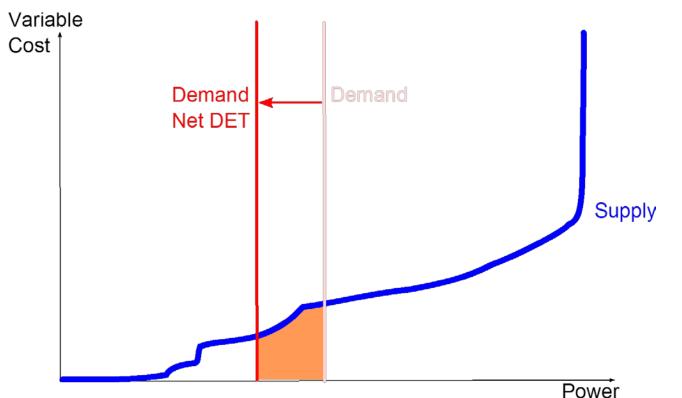
Fundamental issues:

- Developing profiles for DET resources
- Accounting for changes in marginal units (and curtailment) with time, DET penetration, or footprint
- Fuel cost projections and uncertainty

• Overlap with other value categories:

- Separating energy value from capacity value and integration costs
- Accounting for compliance cost impacts
- Wholesale price reduction effects

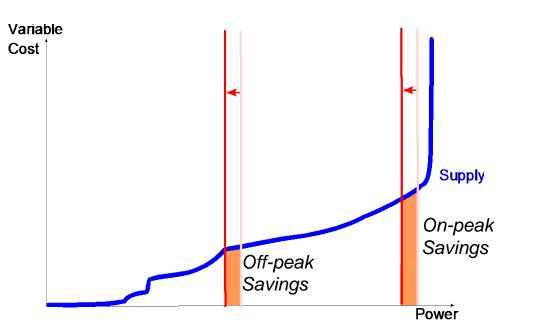
What is energy value, and what is included for the purpose of this presentation?

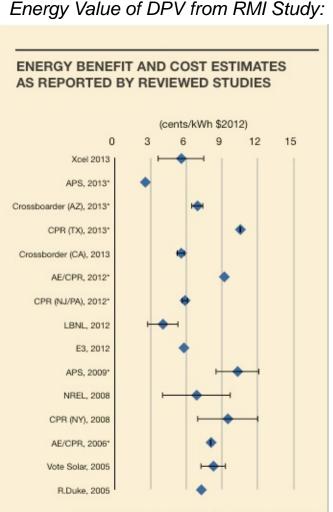

Definition: How much are power-system variable costs reduced (or increased) due to DETs

Cost category	Included?	Overlapping Session
Fuel and variable O&M		
Curtailment	M	
Energy losses	\otimes	Avoided T&D (Fine)
Capacity	Ο	Value of Generation Capacity (Margolis)
Balancing/cycling/integration	0	Grid Services (Imhoff)
Compliance cost impacts	0	Social Costs and Benefits (Hoskins)
Risk hedge value	0	
Wholesale price reduction	0	

- \blacksquare Focus of this session
- \odot Not included in this session
- O Discuss potential overlap in this session 3

Understanding energy value




- Power systems are generally dispatched to minimize variable costs
- Dispatch plants up to the point that demand is met (marginal unit)
- Addition of DET reduces generation, which reduces variable costs
- With large DET share, increasingly lower cost units are displaced
- Complications: (1) some DETs shift electricity use (DR), or increase it (storage, EVs); (2) power system constraints can lead to curtailment

Three main questions / steps:

- 1. When is DET generating (or charging)?
- 2. What generation is displaced (or used) during those times (i.e. what is the marginal unit)?
 - Can all DET generation be used or is there a need for some curtailment?
- 3. What are the variable costs of the displaced generators?

* = value energy savings that result from avoided energy losses

Note: Benefits and costs are reflected separately in chart. If only benefits are shown, study did not represent costs.

Step #1: When is DET generating (or charging)?

Solar PV or distributed wind

 Relatively straightforward to use historical meteorological data with location, type, size, and orientation of DET

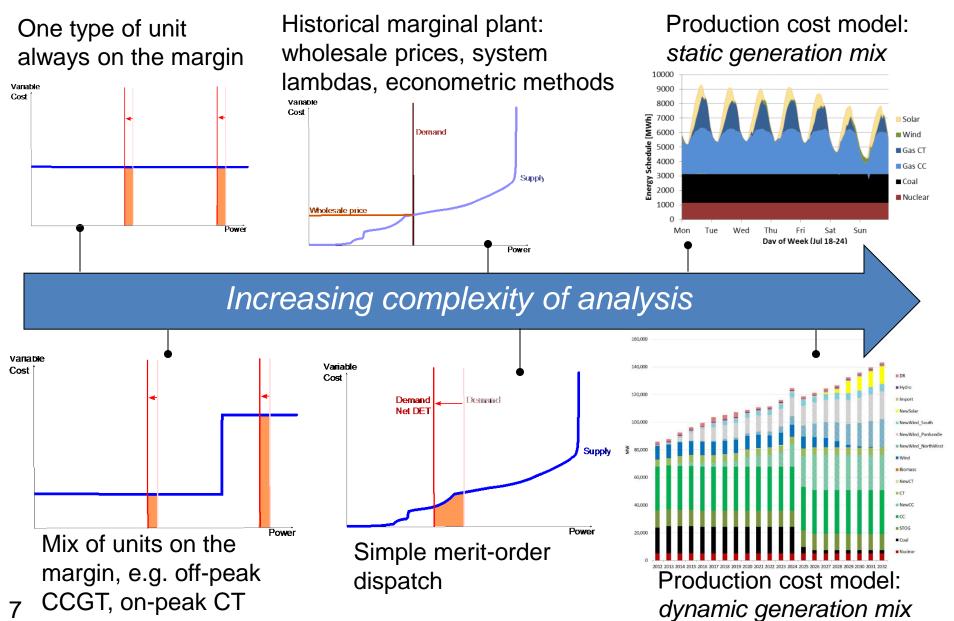
Demand response

- Programs often designed to reduce demand during peak times
- Does customer time-shift energy consumption (e.g. pre-cooling)? Is there a rebound (increase in energy post-event)?

Electric vehicles

- Customer preferences & infrastructure will dictate charging needs/availability

Customer-sited storage


- Is storage dispatched based on local retail rates?
- Or is it dispatched based on local T&D needs?
- Or is it dispatched based on bulk power system needs?

Combined heat and power (CHP)

What processes drive dispatch of CHP units? Is it building/district heating?
Industrial process? Do bulk power system needs impact dispatch?
6

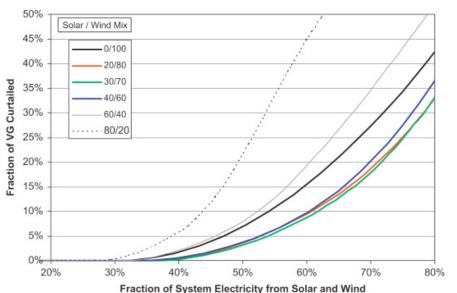
Step #2: What generation is displaced (or used) and at what heat rate?

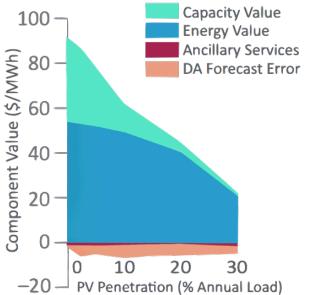
Step #2b: Can all DET generation be used or is there a need for some curtailment?

- When the system is constrained, DET may need to be curtailed rather than displacing generation
 - Curtailed DET does not reduce variable costs
- Curtailment mostly occurs with low load and high shares of DET generation, and is magnified by:
 - Congestion: transmission and distribution constraints
 - Inflexibility in conventional generation: high startup and shut-down costs, long start times or minimum run times, high minimum generation levels for reliability or environmental reasons (e.g. minimum river flows for hydro)
- Only some of the previous methods can endogenously estimate curtailment needs

Step #3: What are the variable costs of marginal units?

- Variable O&M costs are relatively small: can use data from EIA or others
- Fuel costs are large source of uncertainty and variation in estimates of energy value
- Estimates of energy value need to project variable costs over life of DET
- NYMEX futures and EIA AEO are common sources of fuel price forecasts

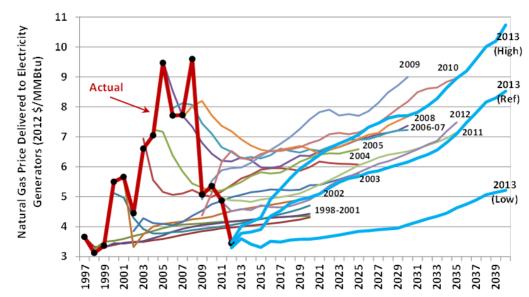



Fundamental Issue #1: DET Output Profiles

- Not a lot of experience and data for certain types of DETs
 - Solar and wind are among the most straight-forward
 - DR, electric vehicles, storage, CHP all more complicated
- Different assumptions for dispatch/availability can be both justifiable and lead to quite different results
 - e.g. different energy value if you assume storage will be dispatched to reduce customer peak demand charge vs. to minimize system costs
- Dispatch of DET can depend on penetration of other DET
 - e.g. storage dispatch to minimize system costs will be different with low PV vs. with high PV
- Only some of the methods for identifying marginal units can account for different / complicated DET profiles
 - Particularly important for net energy consuming technologies (e.g. storage, electric vehicles), and for DETs that can be dispatched

Fundamental Issue #2: Change in marginal units (& curtailment) with time, DET penetration, or footprint of analysis

- Which units are on the margin depends on time, DET penetration, and interactions with neighboring regions; also affects curtailment
- Only some methods for estimating which units are displaced endogenously account for these changes, otherwise adjustments need to be made 'manually'
- Changes in marginal unit and curtailment with DET penetration can be important factors at high penetration, but have often been ignored in studies thus far



11

Fundamental Issue #3: Fuel cost projections and uncertainty

- Future fuel costs are uncertain how is this addressed?
- Fuel costs vary by location and season will these differences be the same in the future or do they reflect temporary constraints?
- Lack of fuel costs for some DETs implies overall exposure to fuel price volatility will be decreased (risk "hedge" value)
 - Is this a social benefit? Or does it only inure to the participant? How can it be calculated?

Overlap Issue #1: Separating energy value from capacity value and integration costs

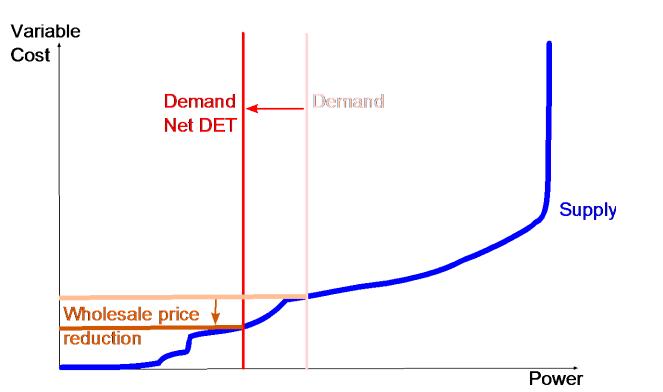
- When wholesale prices are used to estimate energy value, one needs to be careful not to "double count" capacity value
 - Wholesale prices can sometimes exceed variable costs of generators (scarcity prices)
 - High prices in the energy market may reduce capacity market prices
- To some degree wholesale prices and production cost models embed costs associated with "integration"
 - Part-load heat rates and startup costs are often included in production cost models
 - Wholesale prices may reflect opportunity costs related to shutdown or ramping
 - Again this requires careful consideration of what costs and benefits are included and in what category

Overlap Issue #2: Accounting for compliance cost savings

- Wholesale prices, system lambdas, and production cost models may already include costs associated with criteria pollutants (e.g. NOx or SOx permit prices)
 - Be careful not to double count with social costs, but also recognize that permit prices may not reflect true social cost

RPS compliance cost savings

- DETs can sometimes reduce retail sales, which reduces absolute amount of renewable energy needed to meet RPS based on fraction of retail sales
- Some DETs may also produce RECs that count toward RPS compliance, thereby offsetting alternative REC purchases


GHG compliance cost savings

- Some DETs may help meet current or future GHG goals or regulations
- These values can be considered part of energy value, can be considered part of social costs and benefits, or might be considered separately altogether

Overlap Issue #3: Wholesale electricity price reduction ("merit-order") effects

- Addition of DET can lower wholesale power prices
- Clear benefit to consumers that purchase power in wholesale markets, but...
 - Is this a social benefit or just a transfer from producers to consumers?
 - How long does this effect persist? Is it permanent or temporary?

Summary of Key Points

• Three steps to address energy value:

- When is DET generating (or charging)?
- What generation is displaced (or used) during those times?
 - Does any of the DET need to be curtailed instead of used to displace generation?
- What are the variable costs of those generators?

• Fundamental issues in answering these questions:

- Developing profiles for DET resources
- Dependence of marginal units and curtailment on time, DET penetration, and footprint of analysis
- Fuel cost projections and uncertainty

• Overlap with other categories

- Separating energy value from capacity value and integration costs
- Accounting for compliance cost savings
- Wholesale price reduction effects