Working Fluids: Low Global Warming Potential Refrigerants 2014 Building Technologies Office Peer Review Energy Efficiency & Renewable Energy Omar Abdelaziz, <u>abdelazizoa@ornl.gov</u> Oak Ridge National Laboratory # **Project Summary** ### Timeline: Start date: 01-Oct-2010 Planned end date: 30-Sep-2016 ### **Key Milestones** - 1. Data analysis and reporting of supermarket system: baseline and alternative refrigerants; 12/31/2014 - 2. Perform initial field testing of alternative refrigerant in 3rd party installation; 9/30/2014 - 3. Deliver enhanced Life Cycle Climate Performance (LCCP) Design Tool; 9/30/2014 # **Budget**: Total DOE \$ to date: \$2,650K Total future DOE \$: \$1,000K (\$500K for FY15 and \$500K for FY16) ### **Target Market/Audience**: Residential and Commercial Heating, Air Conditioning, and Refrigeration with a Primary focus on Commercial Refrigeration due to the large leak potential ### **Key Partners**: | Honeywell | CRADA Partner and
Key Contributor | | | | | | | |------------|--------------------------------------|--|--|--|--|--|--| | SEIVERSITA | Subcontractor and | | | | | | | | 18 56 | LCCP Design Tool | | | | | | | | ZARYLAND | Developer | | | | | | | ### **Project Goal**: To develop low Global Warming Potential (GWP) refrigerant solutions for the Heating, Air Conditioning and Refrigeration (HVAC&R) market through leadership in Life Cycle Climate Performance (LCCP) modeling, experimental evaluation, and field testing. # **Purpose and Objectives** ### **Problem Statement:** - HCFC phase out resulted in the use of high GWP HFC - Newly developed low GWP refrigerants are blends that require more studies: flammability, glide, heat transfer, efficiency/GWP trade-off # **Target Market and Audience:** - Residential and Commercial HVAC&R: emphasis supermarket refrigeration - Using the BTO Market Definition; these sectors are responsible for ~ 11.4 Quads in 2030 (1.59 Quads for supermarket refrigeration) ### **Impact of Project:** - 1. Development of a validated Open Source LCCP Design Tool - 2. Development of best practices for low GWP refrigerant switch-over with a documented field study results - 3. The project impact - a. Number of software downloads and web-traffic, field test performance - b. Successful pilot low GWP supermarket refrigeration installation - c. Market share of low GWP supermarket refrigeration # **Approach** - Characterize performance of alternative low GWP refrigerants developed by Honeywell, our CRADA partner in HVAC&R equipment - Heat exchangers testing - Compressor calorimeter testing - Supermarket refrigeration system - Develop an Open Source Life Cycle Climate Performance (LCCP) <u>D</u>esign tool to allow the next generation of HVAC&R engineers to design equipment with life cycle emissions as an important decision factor # **Approach: Key Issues** ### PHASEOUT TIMELINE AND SUGGESTED ACTIONS http://www.littletonair.com/refrigerants_and_your_air_condit.html Renewable Energy - Large quantity of high GWP refrigerants currently in use in existing HVAC&R equipment - R-404A has a GWP $_{100}$ of 3700, typical Supermarket Refrigeration-Centralized DX charge is 3000 lbs - Identify low GWP refrigerant replacements which are drop-in replacements # **Approach: Distinctive Characteristics** - Develop an open-source LCCP Design tool - Anticipated to be the internationally recognized "go-to" tool to assess environmental impacts of HVAC&R equipment - Involve the industry: ASHRAE MTG.Low GWP, AHRI - Involve the international community: participation through IIR working party and IEA Heat Pump Center - Determine low GWP refrigerant performance: - Supermarket refrigeration system, under controlled lab conditions using N-40 (GWP = 1273) - Compressor calorimeter evaluations - Heat exchanger evaluation ### **Lessons Learned:** - Need for adequate moisture management - Reduce number of quick coupling (leak potential) - Need to proper size the expansion valves to achieve adequate superheat controls; especially with alternative refrigerants ### **Accomplishments**: - Developed an Open Source LCCP Design Tool (http://lccp.umd.edu/) with web-based interface for air source heat pumps and supermarket refrigeration (FY2013 Q4 Milestone) - Tested baseline R-404A and alternative low GWP N-40 refrigerants in a supermarket refrigeration system under a controlled environment in an experimental test bed (FY2014 Q1 Milestone) - Analyzed the LCCP of several supermarket refrigeration systems with various refrigerants Renewable Energy Evaluated a heat exchanger with baseline and 2 alternative refrigerants (FY2014 Q2 Milestone) LCCP INPUT PARAMETERS Number of compressors [-] Select System Type | Combined MTLT DX Syste 🗸 # Life Cycle Climate Performance - Supermarket Refrigeration Select Load Profile Load Profile 1 Select City Load-profile curve Chicago, Illinois [4] RUN # Life Cycle Climate P <u>Life Cycle Climate Performance (LCCP) – CORNL LCCP Desktop Application Downloa ORNL-LCCP Web Application</u> ### **Life Cycle Climate Performan** LCCP Design Tool for Supermarket Refrigeration Systems LCCP Evaluation Tool for Residential Heat Pump Systems LCCP Design Tool for Residential Heat Pump Systems #### SYSTEM INPUTS Load sample values Refrigerant [-] R404A Subcooling at Expansion Device [F] 50.4 System Charge [lb] 4409.25 Superheat at Evaporator Outlet [F] 65.0 15 Annual Leak Rate [%] System Lifetime [yrs] Refrigerant Loss-EOL [%] 15 55.0 Cut-off Temperature [F] 5 Service Leakage Rate [%] 0.05 Service Interval [vear] COMPONENT INPUTS [LT SYSTEM PARAMETERS] 10 Full-Scale Supermarket Refrigeration Experimental Evaluation under **Controlled Laboratory Conditions** - N40 performance over R-404A over the ambient temperature range - Reduced compressor power by 3.7% - Increased refrigeration capacity by 7.5% - Increased system COP by 11.6% The actual superheat of 407A and 407F is usually higher than R404A. This results in matched capacities at lower refrigerant flow rates. ### Market Impact: - Based on the favorable results of N-40 and its low GWP (1273); it is expected that it will become the optimal solution for supermarket refrigeration systems - The CRADA partner expects to launch it this year (pending some approvals) - "Relevant" end users have shown strong support for using N-40 already - Web-based LCCP tool is highly used: 661 unique users to-date - 2012 Purdue Conference Paper on LCCP of Commercial Refrigeration: - 167 downloads in the last year only - ASHRAE MTG Alternative Global Warming Refrigerant - Growing membership - Expanding Program - AHRI AREP - Successful participation in the program # Awards/Recognition: None # **Project Integration and Collaboration** # **Project Integration:** - ASHRAE MTG on low GWP refrigerant research - AHRI AREP testing - International Institute of Refrigeration (IIR) working party on LCCP - Attending conferences (regional, national, and international) # Partners, Subcontractors, and Collaborators: - Honeywell: CRADA Partner; low GWP refrigerant developer and global supplier - Mark Spatz: Director of Refrigerants Technology/Sponsor - Samuel Yana-Motta: Refrigerants R&D Leader/Project manager - Gustavo Pottker: Experimental Engineer/Scientist - Ankit Sethi: Modeling/Simulation Engineer/Scientist - Paul Sullivan: Application support - University of Maryland: Subcontractor; development of Open Source LCCP <u>D</u>esign Tool - Reinhard Radermacher: Center Director - Vikrant Aute: Principal Investigator # **Communications: Last 12 Months** ### **SEMINAR PRESENTATIONS (1)** • Fricke et al. 2014. Air-to-Refrigerant Heat Exchangers. 2014 ASHRAE Winter Meeting. ### **CONFERENCE PAPERS (5)** - Fricke et al. 2013. Reducing the Carbon Footprint of Commercial Refrigeration Systems Using Life Cycle Climate Performance Analysis: From System Design to Refrigerant Options. 2nd IIR International Conference on Sustainability and the Cold Chain, Paris. - Fricke et al. 2013. Energy Efficiency and Environmental Impact Analyses of Supermarket Refrigeration Systems. 2013 ASHRAE Summer Meeting. - Abdelaziz et al. 2014. Development of Versatile Compressor Modeling using Approximation Techniques for Alternative Refrigerant Evaluation. 2014 ASHRAE Winter Meeting. - Beshr et al. 2014. A Tool for Life Cycle Climate Performance (LCCP) Based Design of Residential Air Source Heat Pumps. 11th IEA Heat Pump Conference, Montréal. - Beshr et al. 2014. An Evaluation of the Environmental Impact of Commercial Refrigeration Systems Using Low Global Warming Potential Refrigerants. 3rd IIR International Conference on Sustainability and the Cold Chain, London. ### **JOURNAL ARTICLES (1)** • Beshr et al. 2013. A Tool for Life Cycle Climate Performance (LCCP) Based Design of Residential Air Source Heat Pumps, *IEA Heat Pump Centre Newsletter*, Vol. 31, No. 3, 21-25. ### WEBINARS (1) Aute et al. 2014. New Open Source Life Cycle Climate Performance (LCCP) Framework. University of Maryland College Park, April 18th, 2014. # **Next Steps and Future Plans** # **Next Steps and Future Plans:** - Develop field test plan and identify field test site for evaluation of alternative refrigerant in 3rd party installation (6/30/2014) - Perform initial field testing of alternative refrigerant in 3rd party installation (9/30/2014) - Complete 3rd party field evaluation and report results (6/30/2015) - Perform testing of low GWP refrigerants in equipment that has been modified or designed specifically for the alternative refrigerant (9/30/2015) ### **Planned and Submitted Publications:** - Beshr et al. 2014. 15th Int. Ref. & Air Cond. Conf., West Lafayette, IN. - ✓ An Evaluation of the Environmental Impact of Different Commercial Supermarket Refrigeration Systems Using Low Global Warming Potential Refrigerants. - ✓ Impact of Charge Degradation on the Life Cycle Climate Performance of a Residential Air- Conditioning System - ✓ An Evaluation of the Environmental Impact of Different Commercial Supermarket Refrigeration Systems Using Low Global Warming Potential Refrigerants - Beshr et al. 2014. A Comparative Study on the Environmental Impact of CO2 Supermarket Refrigeration Systems. 11th IIR-Gustav Lorentzen Conf. on Nat. Ref., Hangzhou, China. - Beshr et al. 2014. A Novel Modular Tool for Life Cycle Climate Performance (LCCP) Based Design of Vapor Compression Systems. *Env. Sci.& Tech.* # REFERENCE SLIDES # **Project Budget** **Project Budget**: DOE Total \$3,650K, FY11-16. Variances: Budget cut by \$850k due to program prioritization, timeline relaxed for 2 years to accommodate the budget cut. Cost to Date: ~ \$2,461K through February 2014 Additional Funding: None expected. | Budget History | | | | | | | | | |----------------|----------------------------|--------|------------|----------|-----------------------------|--|--|--| | | FY2011 — FY2013 FY20 (curr | | · | | '2015 – FY2016
(planned) | | | | | DOE | Cost-share | DOE | Cost-share | DOE | Cost-share | | | | | \$2,200K | * | \$450K | * | \$1,000K | * | | | | ^{*} In-kind contribution from CRADA partner – matches or exceeds DOE funding level; exact total is confidential information # **Project Plan and Schedule** | Project Schedule | | | | | | | | | | | | | |---|--------------|---|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | Project Start: 1 October 2011 | | Completed Work | | | | | | | | | | | | Projected End: 30 September 2016 | | Active Task (in progress work) | | | | | | | | | | | | | • | Milestone/Deliverable (Originally Planned) use for missed | | | | | | | | | | | | | • | Milestone/Deliverable (Actual) use when met on time | | | | | | | | | | | | | | FY2013 | | | FY2014 | | | | FY2015 | | | | | Task | Q1 (Oct-Dec) | Q2 (Jan-Mar) | Q3 (Apr-Jun) | Q4 (Jul-Sep) | Q1 (Oct-Dec) | Q2 (Jan-Mar) | Q3 (Apr-Jun) | Q4 (Jul-Sep) | Q1 (Oct-Dec) | Q2 (Jan-Mar) | Q3 (Apr-Jun) | Q4 (Jul-Sep) | | Past Work | | | | | | | | | | | | | | Q2 Milestone: LCCP Analysis, Refrig. System | | | | | | | | | | | | | | Q3 Milestone: LCCP Tool Expansion (ASHP) | | | • | • | | | | | | | | | | Q4 Milestone: LCCP Analysis, ASHP | | | | | | | | | | | | | | Q4 Milestone: Sensitivity/Validation of LCCP Tool | | | | | | | | | | | | | | Current/Future Work | | | | | | | | | | | | | | Q1 Milestone: Refrigeration System Evaluation | | | | | | | | | | | | Ш | | Q2 Milestone: Heat Exchanger Evaluation | | | | | | | <u> </u> | | | | | Ш | | Q3 Milestone: Field Site Test Plan | | | | | | | | | | | | igsquare | | Q4 Milestone: Initiate Field Testing | <u> </u> | | <u> </u> | | | | <u> </u> | | | | | Щ | | Q3 Milestone: Complete Field Testing | <u> </u> | <u> </u> | | | | | | | | | | | | Q4 Milestone: Testing of Advanced Equipment | | | | | | | | | | | | |