DOE/OE Transmission Reliability Program

Voltage Stability

Scott Ghiocel and Joe Chow

Rensselaer Polytechnic Institute ghiocel@alum.rpi.edu, chowj@rpi.edu June 3-4, 2013 Washington, DC

Project Objective

- Synchrophasor-based voltage stability (VS) analysis
- Real-time monitoring of VS margins considering:
 - Actual system conditions (adjusting the model using online measurements)
 - Complex power transfer paths (instead of radial)
 - Contingencies
 - Computational efficiency
- Project Status near completion
 - Started January 2013
 - Scheduled completion by end of July 2014

New Idea: The AQ-Bus Type

- Eliminates the Jacobian singularity at the maximum power transfer point
- Specify the voltage angle for the load bus (remove 1 unknown)
- Remove load P equation (load power not enforced)

$$J = -\frac{1}{X} \left[\begin{array}{c|c} V_L E \cos \theta_s & E \sin \theta_s \\ V_L E \sin \theta_s & 2V_L - E \cos \theta_s \end{array} \right] \qquad \text{Removed}$$
 Specified bus angle
$$\begin{array}{c|c} \text{Reduced Jacobian} \\ \text{Reduced Jacobian} \end{array}$$

- No load parameter required
- This reduced Jacobian matrix is nonsingular at the maximum loading point [1]
 - [1] Ghiocel, S.G.; Chow, J.H., "A Power Flow Method Using a New Bus Type for Computing Steady-State Voltage Stability Margins," *IEEE Transactions on Power Systems*, vol.29, no.2, pp.958-965, March 2014

Features of the AQ-Bus Method

- Includes all features of conventional power flow:
 - Tap-changing transformers
 - Shunt compensation
 - Reactive power limits
- Compute VS margins by adjusting the AQ bus voltage angle relative to the swing (AV) bus → indirectly increases power transfer
- Accommodates multiple loads and generators
- Useful for fast contingency-based voltage stability analysis
- Can be generalized to large power systems:

Bus types	Bus representation	Fixed values	
PV	Generator buses	Fixed active power generation and bus voltage	
PQ	Load buses	Fixed active and reactive power consumption	
AV	Swing bus (generator) Fixed angle (A) and voltage magnitude		
AQ	Load bus	Fixed voltage angle and reactive power consumption	

Hybrid VSA Example: Central NY

- Phasor data from 6 PMUs provided by New York Power Authority (NYPA)
- 13-bus observable subnetwork
- Pseudo-PMU data calculated on the non-PMU buses using a phasor-only state estimator (PSE)
- Power flows from West and North towards NYC
- Critical power transfer interfaces
- Weaker ties to ISO-New England and other neighboring control areas

Computed PV Curves for NY System

- Calculated PV curves based on actual system conditions
- Measurement-adjusted model
- Includes SVC equipment limits
- Multiple generation sources based on information from PMU data

Event	Gen. loss	ΔP_{flow}	Margin
1	800 MW	300 MW	1300 MW
2	700 M W	250 MW	1350 MW

BPA Wind Hub Diagram

Credit: E. Heredia, D. Kosterev, M. Donnelly, "Wind Hub Reactive Resource Coordination and Voltage Control Study by Sequence Power Flow, 2013 IEEE PES General Meeting, July 2013.

Voltage Issues at a BPA Wind Hub

- 600 MW wind interconnection
- Huge voltage variations
- Weak system (line outage)
- Wind plant curtailment
- Shunt capacitor issues

CONSORTIUM FOR ELECTRIC RELIABILITY TECHNOLOGY SOLUTIONS

PV Curves with East-WH Line Outage Contingency

Ongoing Analysis: Southern California

- Local voltage issues on 230 kV system
- Some stiff buses (Big Creek generators) and weak buses (particularly Bus 11)
- Reactive power support and series compensation on highvoltage lines
- Some wind generation around Bus 17
- PMU data one data point per minute

Accomplishments

- Development of AQ-bus method for VS analysis:
 - Publications
 - S.G. Ghiocel, J.H. Chow, "A Power Flow Method Using a New Bus Type for Computing Steady-State Voltage Stability Margins," *IEEE Transactions on Power Systems*, vol.29, no.2, pp.958-965, March 2014
 - S.G. Ghiocel, J.H. Chow, R. Quint, D. Kosterev, D.J. Sobajic, "Computing measurement-based voltage stability margins for a wind power hub using the AQ-bus method," *Power and Energy Conference at Illinois (PECI)*, March 2014
 - S.G. Ghiocel, J.H. Chow, G. Stefopoulos, B. Fardanesh, D. Maragal, D.B. Bertagnolli, M. Swider, M. Razanousky, D.J. Sobajic, "Phasor-measurement-based Voltage Stability Margin Calculation for a Power Transfer Interface with Multiple Injections and Transfer Paths," Power Systems Computation Conference, August 2014 (accepted)
 - Patent application filed (May 2014)
 - Interest from a commercial software vendor
- Measurement-based VS analysis development and demonstration:
 - Central NY power transfer interfaces
 - BPA wind hub

Project Status

- Deliverables for FY14:
 - Application installation and testing at BPA
 - Installation June 2014
 - Testing June-July 2014
 - Report July 2014
 - SCE voltage stability analysis report June 2014
 - Final report July 2014
 - Demonstrate the online application at NASPI VSA Workshop (tentative) – October 2014
- Risk Factors:
 - Data availability
 - Data accuracy

Follow-on Work

- New PMU data
 - Increased BPA PMU availability for wide-area VS assessment
 - New wind and solar plant PMU data from Southern California
 - Wind turbine PMU data from NY North Country from NYPA
- Multiple voltage collapse scenarios and cascading failures
 - Considering multiple load areas
 - Sensitivity of the maximum loadability to outages, wind turbine type, etc.
- Extend to system-wide voltage stability analysis
 - Implementation in commercial power system software
 - Implementation in EMS for real-time contingency analysis
- Moving from stability assessment to decision support
 - Evaluating and recommending preventative/remedial actions using online PMU data

