DOE/OE Transmission Reliability Program

Measurement-Based Estimation of Linear Sensitivity Distribution Factors and its Application in Online Analysis Tools

Alejandro D. Domínguez-García and Peter W. Sauer

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

Email: {aledan, psauer}@ILLINOIS.EDU

CERTS-DOE Transmission Reliability Program Internal Review Washington, DC June 3-4, 2014

CONSORTIUM FOR ELECTRIC RELIABILITY TECHNOLOGY SOLUTION

Introduction

Measurement-Based DF Computation Approach

Using Measurement-Based DFs to Improve Online Tools

Concluding Remarks

Motivation

- To maintain operational reliability, operators rely on online studies conducted on a model of the system obtained from
 - 1. A mix of a priori information, including
 - Historical electricity demand patterns
 - Equipment maintenance schedules
 - Up-to-date network topology
 - 2. Observations in the form of measurement data
- When SCADA systems provide only low-bandwidth, unsynchronized measurement data to a control center:
 - ► A priori information and observations contributed similarly in, e.g., topology error identification and contingency analysis
- The availability of high-bandwidth, time-synchronized PMU data shifts this balance, creating a larger role for observations
 - This reduces the need for full model information, thereby opening the door to much faster health monitoring

Overall Project Objective

- Linear sensitivity distribution factors (DFs) are used in many online analysis tools:
 - ► Contingency analysis, generation re-dispatch, congestion relief
- Existing approaches to computing DFs typically employ a DC model; this is not ideal because
 - 1. Accurate model containing up-to-date topology is required
 - 2. Results may not be applicable if actual system evolution does not match predicted operating points
- Phasor measurement units (PMUs) provide high-speed voltage and current measurements that are time-synchronized

Objectives:

- 1. Estimate linear sensitivity DFs by exploiting measurements obtained from PMUs without the use of a power flow model
- 2. Utilize measurement-based DFs to improve the performance of online tools for monitoring and control

Looking Back

- ► Developed measurement-based methods for DF estimation:
 - They rely on PMU measurements
 - They do not use of a power flow model
 - Estimation can be achieved with fewer measurements
- Demonstrated key advantages of proposed measurement-based methods:
 - Eliminate reliance on system models and corresponding accuracy
 - Resilient to undetected system topology and operating point changes
 - They can be utilized for detecting topology changes, which enables updating the model in near real time
- Demonstrated effectiveness of proposed methods for improving the performance of online tools for monitoring and control:
 - Contingency analysis
 - Transmission loading relief

Introduction

Measurement-Based DF Computation Approach

Using Measurement-Based DFs to Improve Online Tools

Concluding Remarks

Distribution Factors

- Power transfer distribution factor (PTDF) the MW change in a branch flow for a 1 MW exchange between two buses
- Line outage distribution factor (LODF) the MW change in a branch flow due to the outage of a branch with 1 MW pre-outage flow
- Outage transfer distribution factor (OTDF) the MW change in a branch flow for a 1 MW exchange between two buses with a line outage

These can all be computed once injection shift factors are known! 7/19

Definition (ISF of line L_{k-l} w.r.t. bus i)

 Ψ_{k-l}^{i} is the partial derivative of P_{k-l} — the real power flow through line L_{k-l} , with respect to P_{i} — the real power injection at bus i:

$$\Psi_{k-l}^i := \frac{\partial P_{k-l}}{\partial P_i}$$

• Let
$$\Delta P_i(t) = P_i(t + \Delta t) - P_i(t)$$

- Denote the change in line L_{k-l} flow resulting from $\Delta P_i(t)$ by $\Delta P_{k-l}^i(t)$
- Based on the definition of ISF, it follows that

$$\Psi_{k\text{-}l}^{i} := \frac{\partial P_{k\text{-}l}}{\partial P_{i}} \approx \frac{\Delta P_{k\text{-}l}^{i}(t)}{\Delta P_{i}(t)}$$

Definition (ISF of line L_{k-l} w.r.t. bus i)

 Ψ_{k-l}^{i} is the partial derivative of P_{k-l} — the real power flow through line L_{k-l} , with respect to P_{i} — the real power injection at bus i:

$$\Psi_{k-l}^i := \frac{\partial P_{k-l}}{\partial P_i}$$

• Let
$$\Delta P_i(t) = P_i(t + \Delta t) - P_i(t)$$

- Denote the change in line L_{k-l} flow resulting from $\Delta P_i(t)$ by $\Delta P_{k-l}^i(t)$
- Based on the definition of ISF, it follows that

$$\Psi_{k\text{-}l}^{i} := \frac{\partial P_{k\text{-}l}}{\partial P_{i}} \approx \frac{\Delta P_{k\text{-}l}^{i}(t)}{\Delta P_{i}(t)}$$

ISF Computation Approach

$$\Psi_{k\text{-}l}^{i} \approx \frac{\Delta P_{k\text{-}l}^{i}(t)}{\Delta P_{i}(t)} \implies \Delta P_{k\text{-}l}^{i}(t) \approx \Delta P_{i}(t) \Psi_{k\text{-}l}^{i}(t)$$

Total variation as sum of partial variations:

$$\Delta P_{k-l} \approx \Delta P_{k-l}^1 + \dots + \Delta P_{k-l}^i + \dots + \Delta P_{k-l}^n$$

$$\Delta P_{k-l} \approx \Delta P_1 \Psi_{k-l}^1 + \dots + \Delta P_i \Psi_{k-l}^i + \dots + \Delta P_n \Psi_{k-l}^n$$

• $\Delta P_i(t) = P_i(t + \Delta t) - P_i(t)$

$$\Delta P_{k-l}(t) = P_{k-l}(t + \Delta t) - P_{k-l}(t)$$

ISF Computation Approach

$$\Psi_{k\text{-}l}^{i} \approx \frac{\Delta P_{k\text{-}l}^{i}(t)}{\Delta P_{i}(t)} \implies \Delta P_{k\text{-}l}^{i}(t) \approx \Delta P_{i}(t) \Psi_{k\text{-}l}^{i}$$

Total variation as sum of partial variations:

$$\Delta P_{k-l} \approx \Delta P_{k-l}^1 + \dots + \Delta P_{k-l}^i + \dots + \Delta P_{k-l}^n$$

$$\Delta P_{k-l} \approx \Delta P_1 \Psi_{k-l}^1 + \dots + \Delta P_i \Psi_{k-l}^i + \dots + \Delta P_n \Psi_{k-l}^n$$

$$\blacktriangleright \Delta P_i[j] = P_i[j+1] - P_i[j]$$

•
$$\Delta P_{k-l}[j] = P_{k-l}[j+1] - P_{k-l}[j]_{9/19}$$

ISF Computation Approach

► Stacking *m* of these measurement instances up:

- Proposed measurement-based approach relies on inherent fluctuations in load and generation
- Other assumptions:
 - ► The ISFs are approximately constant across the m+1 measurements
 - \blacktriangleright The regressor matrix ΔP has full column rank

Solution Methods

$$\Delta P_{k-l} = \Delta P \Psi_{k-l} + e$$

where $\Delta P_{k\text{-}l} \in \mathbb{R}^m$, $\Delta P \in \mathbb{R}^{m imes n}$, and $\Psi_{k\text{-}l} \in \mathbb{R}^n$

- Collect m > n measurement instances and solve via Least-squares errors estimation (LSE)
- Collect m < n measurement instances and solve via sparse-vector recovery techniques:
 - Exploit a sparse representation (i.e., one in which many elements are zero) of the ISFs
 - Solve for the transformed sparse representation
 - Compute actual ISFs by applying the inverse transformation 1

Introduction

Measurement-Based DF Computation Approach

Using Measurement-Based DFs to Improve Online Tools

Concluding Remarks

Case Study Methodology

- ► Applications Illustrated with IEEE 118-Bus System
- Simulate PMU measurements of random fluctuations in active power injection at each bus

$$P_{i} = P_{i}^{0} + \sigma_{1} P_{i}^{0} v_{1} + \sigma_{2} v_{2}$$

- P_i^0 nominal power injection at node i
- $\sigma_1 P_i^0 v_1$ inherent variability in power injection with time
- $\sigma_2 v_2$ measurement noise
- ▶ v₁ and v₂ pseudorandom values drawn from standard normal distribution
- For each set of random power injection data, compute the power flow, with the slack bus absorbing all power imbalances

Contingency Analysis: Generator Outage

- Consider outage of generator G_{12} as contingency
- Lost generation divided among G_{10} , G_{25} , and G_{26}
- Compare post-contingency line flows obtained via (i) nonlinear power flow model, (ii) model-based ISFs, and (iii) measurement-based ISFs
 - Scenario 1: no undetected topology changes
 - ► Scenario 2: two undetected transmission line outage

Figure: Error in line flows estimates with respect to full power flow solution for Scenario 1

Figure: Error in line flows estimates with respect to full power flow solution for Scenario 2

Contingency Analysis: Line Outage

- Consider outage of line L_{37-40} as contingency
- Undetected outages of lines L_{41-42} and L_{42-49} at j = 200
- ▶ ISFs computed using previous m = 500 sets of measurements at j = 500 and j = 800

Line	Actual	Model-based	Measurement-based [p.u.]			
L_{k-l}	[p.u.]	[p.u.]	j = 500		j = 800	
			f = 1	f = 0.98	f = 1	
L_{23-24}	0.0344	0.0497	0.0523	0.0296	0.0360	
L_{26-30}	2.2564	2.2509	2.2499	2.2589	2.2564	
L_{23-32}	0.9465	0.9410	0.9402	0.9481	0.9459	
L_{15-33}	0.0930	0.0860	0.0842	0.0933	0.0908	
L_{33-37}	-0.1374	-0.1445	-0.1462	-0.1372	-0.1396	
L_{34-36}	0.3088	0.3066	0.3064	0.3093	0.3085	
L_{34-37}	-0.8849	-0.9049	-0.9125	-0.8855	-0.8928	
L_{38-37}	2.6145	2.5585	2.5446	2.6274	2.6052	
L_{37-39}	1.2548	1.1697	1.1451	1.2673	1.2346	
L_{37-40}	—		—		_	

Table: Post-outage actual and estimated line flows

Generation Re-Dispatch

- Consider undetected outages of lines L_{41-42} and L_{42-49} at j = 200
 - Pre-outage flow through line L_{k-l} : P_{k-l}^0
 - Post-outage flow through line L_{k-l} : \tilde{P}_{k-l}^0
- Consider outage of transformer T_{37-38} as contingency
- ▶ ISFs computed using previous m = 500 sets of measurements at j = 800

Line	Pre-contingency [p.u.]		Post-contingency P_{k-l} [p.u.]			
L_{k-l}	P_{k-l}^0	\tilde{P}^{0}_{k-l}	Actual	Model-based	Measurement-based	
L_{15-33}	0.0470	0.0752	1.0378	0.9001	1.0742	

- Suppose thermal limit of line L_{15-33} is 1 p.u.
- Measurement-based method flags violation, while model-based approach does not

Generation Re-Dispatch to relieve L_{15-33}

► For each generating unit *i*, define

$$p_i := \frac{\overline{\gamma} - \gamma_i}{\Psi_{15\text{-}33}^i}$$

where $\overline{\gamma}$ is the so-called dispatch rate, and is determined by the pre-contingency economic dispatch solution

• In order to relieve L_{15-33} , choose unit with the lowest ρ_i

G_i	γ_i	ISF ⊈	ⁱ 15-33	ρ_i [\$/MW Effect]		
	[\$/MWh]	Model-based	Measbased	Model-based	Measbased	
G_{34}	40.05	-0.0627	-0.0620	10.6688	10.7909	
G_{36}	40.10	-0.0650	-0.0666	11.0480	10.7933	
G_{40}	40.00	-0.0566	-0.0707	10.9217	8.7546	

- Model-based: dispatch of G_{34} is optimal
- Measurement-based: dispatch of G_{40} is optimal

Introduction

Measurement-Based DF Computation Approach

Using Measurement-Based DFs to Improve Online Tools

Concluding Remarks

Looking Forward

- ► Major technical accomplishments to be completed in FY14:
 - T1 Test the effectiveness of the DF estimation algorithms using real PMU and SCADA data provided by MISO
 - T2 Define distributed architectures for computation and develop distributed algorithms that adhere to this architectures
 - T3 Develop health monitoring applications that rely on DFs for voltage collapse and small signal stability
- Deliverables and schedule for activities to be completed under FY14 funding
 - T1 Technical report [due at the end of FY14 Q2]
 - T2 Conference submission to NAPS [due at the end of FY14 Q3]
 - T3 Conference submission to HICSS [due at the end of FY14 Q4]
- Risk factors affecting timely completion of planned activities as well as movement through RD&D cycle

T1 Failure to obtain appropriate data from MISO