DOE/OE Transmission Reliability Program

Field Characterization of Rotating and Electronically-Coupled Machine Parameters

Birth of an automated learning system

PI: Mark A. Buckner, PhD

Oak Ridge National Laboratory bucknerma@ornl.gov June 3-4, 2014 Washington, DC

Team: Curt Ayers, Jason Bonior PhD, Joe Gracia P.E., Philip Irminger, J.P. Jones, Travis Smith P.E., Isabelle Snyder PhD

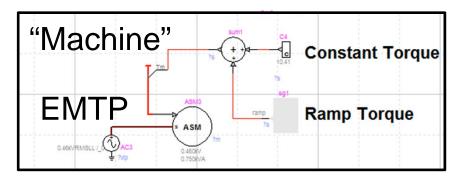
Topics to Address

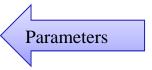
Overall project objective

Looking Back:

 Major accomplishments during the past year (July 2013-June 2014, since the last review meeting)

Looking Forward:


- Major technical accomplishments that will be completed in FY14—current stage in RD&D cycle
- Deliverables and schedule for activities to be completed under FY14 funding
- Risk factors affecting timely completion of planned activities as well as movement through RD&D cycle
- Early thoughts on follow-on work that should be considered for FY15 and beyond

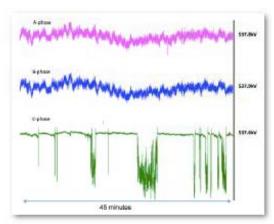


FY14 Project Objective

Learn from empirical data the model parameters of selected rotating and electronically-coupled equipment to faithfully represent steady state and dynamic behavior

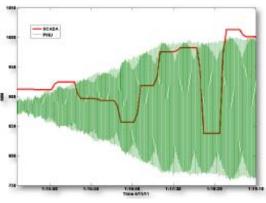
Machine

CONSORTIUM FOR ELECTRIC RELIABILITY TECHNOLOGY SOLUTIONS

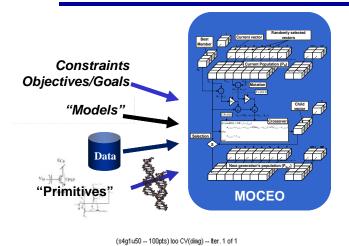


Motivation

- Develop an adaptive, on-line learning system
 - Faithful representation of the components in system
 - Track changes to component behavior
 - Correlate changes to system health
- Determine what additional value can be derived from the existing fleet of PMU's
 - "How fast is fast enough?"
 - Identify the shortfall (if any) in the existing PMU fleet
- Provide a data-driven basis for future investments
- Enable on-line asset monitoring, assessment and condition based maintenance


CCVT Failure

•PMU captured this CCVT failure at instant it began •Failure apparent 4-days <u>before</u> the relay/SCADA alarm



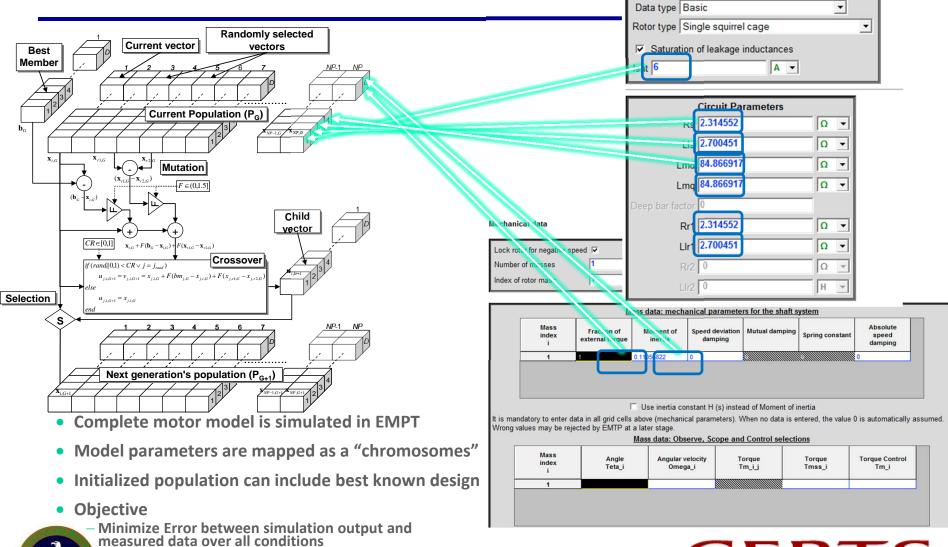
Generator Oscillation

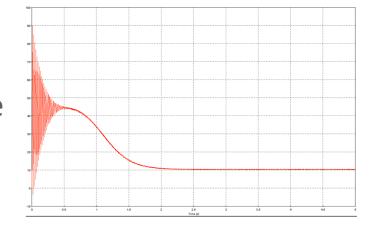
- Large generator oscillation of +/- 200 MW
- •Not detected by traditional SCADA data
- Had impact on 6 other generating stations

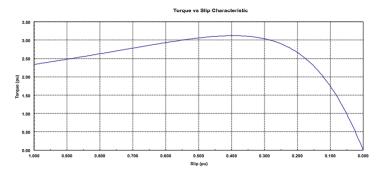
Learning System: Multi-Objective Constrained Evolutionary Optimization Using Differential Evolution

400

500


- Differential Evolution (DE) is a population-based, direct search, evolutionary optimization algorithm
- Similar to other population based search algorithms
 - -Genetic Algorithms
 - -Evolutionary Strategies
- Different
 - -Self-referential mutation scheme
 - Based on vector differentials
 - Step size varies w/ time & is a function of the std dev of parameters in the population
 - -Cross-over (more mathematical, PDF-blending)
 - -Selection (child or parent)


Mapping model parameters to population vectors or "chromosomes" Electrical data



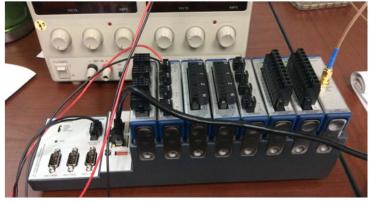
Accomplishments

- Configured "PMU" equipment to provide high sample rate (50 ksps) measurements
 - Can decimate to any desired PMU rate
- Developed and executed test plan
- Developed initial EMTP model of the device based on nameplate
- Simulated the device under varying load conditions
- Operated device under varying load conditions
- Started data collection

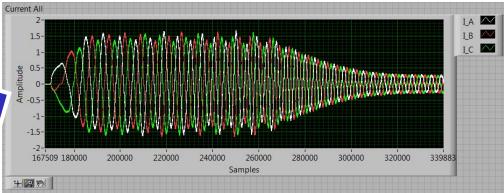
Dyne Setup

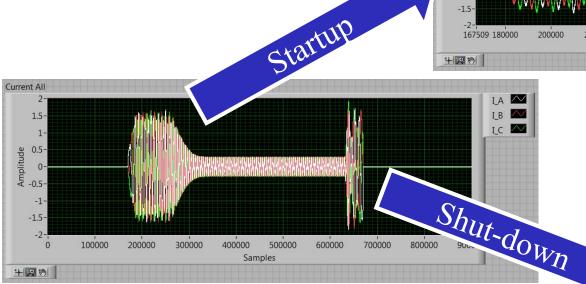


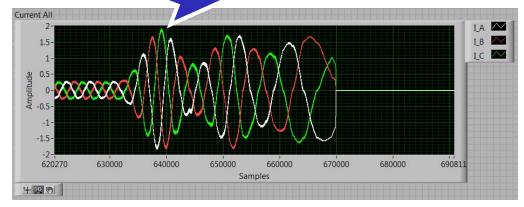
DyneSystems Control


Rating	Full Load Efficiency	Full Load Power Factor	Full Load				
			Slip	Xs+Xr	Xm	Rs	Rr
(HP)	(%)	(%)	(%)	(pu)	(pu)	(pu)	(pu)
<5	75-80	75-85	3.0-5.0	0.10-0.14	1.6-2.2	0.040-0.06	0.040-0.06
5-25	80-88	82-90	2.5-4.0	0.12-0.16	2.0-2.8	0.035-0.05	0.035-0.05
25-200	86-92	84-91	2.0-3.0	0.15-0.17	2.2-3.2	0.030-0.04	0.030-0.04
200-1000	91-93	85-92	1.5-2.5	0.15-0.17	2.4-3.6	0.025-0.03	0.020-0.03
>1000	93-94	88-93	1.0	0.15-0.17	2.6-4.0	0.015-0.02	0.015-0.025

Data Acquisition







Data

Looking Forward (FY14)

- Operate device under varying load conditions
- Collect data for varying load conditions
- Learn model parameters off-line...
 - Deliverable: summary report
- Implement real-time model simulation using LabVIEW/Multisim/FPGA
 - Deliverable: summary report
- Develop and implement automated on-line learning system
 - Deliverable: summary report

Milestones

- April 2014: EMTP model ("machine")
- June 2014: Machine characterization platform
- Jul. 2014: Machine characterized
- Sept. 2014: Off-Line Learning System
- Oct. 2014: Real-time machine simulation (LabVIEW/Multisim)
- Dec. 2014: Automated On-line Learning System

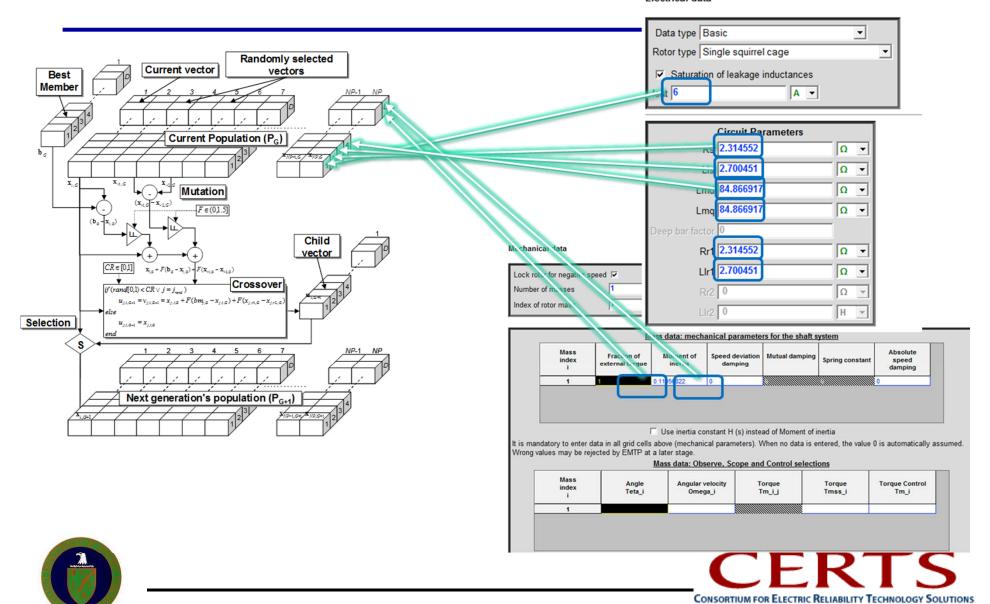
Risk Factors

- Availability/Access to motor test facility and dynamometer
- Adaptation of the Learning system from batch-mode to online/real-time
- Integration/automation of dynamometer, data collection, model/simulation, and optimization.

Future work FY15

- Adapt learning system for electronically coupled devices
 - Characterize an inverter using the machine as the dynamic source/load
 - Develop and simulate real-time inverter model in LabVIEW/Multisim/FPGA
 - Develop and implement automated on-line learning system

Future work ...


- Create an "Oracle" "Intelligent Historian"
 - Identify phenomena of interest
 - Determine appropriate sample rates and algorithms
 - Identify the shortfall (if any) in the existing PMU fleet
 - Prototype "Oracle"
- Transition "Oracle" to the field
 - Identify utility/industry partner
 - Collect field data
 - Characterize phenomena of interest
 - Develop Initial Condition-Based Maintenance Algorithms

Q&A

Electrical data

