

Running Rigorous Evaluations: Applications to Solar

Catherine Wolfram

Faculty Director – The E2e Project & Energy Institute at Haas

Cora Jane Flood Professor, UC Berkeley

May 2014

Supported by a generous grant from The Alfred P. Sloan Foundation

Outline

Motivation

The case for randomized experiments

However, RCTs should be done carefully

Mistakes will lead to misleading results •

Motivation Careful measurement can lead to surprising results!

Annual actual vs. estimated savings kilowatt hours saved per household

The Framework

What are RCTs all about?

How can we measure the benefit of a prescription drug on health?

Meet Meredith

She's an Economics professor at Berkeley

We want to understand the impact of a cholesterol medicine on her health

The difference between Meredith's health when she receives the treatment and when she doesn't reveals the impact of the medicine

Problem: We don't observe both of these...

Treat the real Meredith...

... and observe her clone without the medicine

... unless we could clone Meredith and treat one version!

The framework What do we do in real life?

Compare pill-popping Meredith to Catherine, who does not take the medicine?

Observables:

- Women
- Married, 2 kids each
- Similar in age
- Both Econ professors
- Both at UC Berkeley

Is Catherine a good counterfactual?

Problem: Catherine has different genes and lifestyle (worse). So this comparison will **overstate** the benefit of the pill for Meredith.

1

Randomization provides you with groups that are, on average, equivalent

2

On observable and non-observable characteristics

- **Treatment**: some people with high cholesterol, some people with normal cholesterol
- **Control**: some people with high cholesterol, some people with normal cholesterol

Comparing unlike groups (e.g., Catherine & Meredith) leads to "selection bias"

The Framework **RCT in one picture**

The framework How does randomization work in practice?

It is exactly like a lottery, or like drawing names from a hat

Design Considerations

Some important statistical considerations while designing an RCT

14

Design Aspects to be considered

Plan the Groups' Sizes

You don't need to have a 50/50 split

Can estimate upfront the size of the group you need.

Especially if treatment is costly

Avoid Selection Bias

The selection needs to be random

Decide the Level of Randomization

In many instances, you can't randomize at the individual level (and that's ok)

Ex: Impact of teachers with masters degrees on student performance – classroom

Run a Power Calculation

The larger the impact you are expecting, the smaller the sample you need

Choose the Treatment Carefully

You can only design treatment around variables that can be manipulated

Gender, age, height cannot be changed!

Concluding remarks

What makes a successful RCT?

Building an RCT into the program from the beginning can foster a virtuous cycle of evaluation

Why randomize your next pilot? Because...

It assesses the scaling up process

You want to get a first causal assessment of treatment impacts and understand costs and benefits of scaling up.

Conclusions For successful RCTs

- Engage researchers to participate in program design
- Provide easy access to data for experiment design and evaluation

Develop a strong test-learn-refine culture

Include RCT evaluation in programs at inception

4

Develop strong partnerships. Share expertise and insist on rigor from:

- Partner organizations
- Program implementers
- Other stakeholders

RCTs allow you to identify the real impact of your program

- Including behavioral responses that are otherwise impossible to detect
- Companies such as Google run randomized experiments (A/B tests) regularly to learn about their customers

University of California

Haas School of Business

Ber

Berkeley Office	MIT Office
Energy Institute at Haas E2e Project 2547 Channing Way Berkeley, California 94720-5180 Email: <u>e2e@berkeley.edu</u>	Center for Energy and Env. Policy Research E2e Project MIT Building E19-411 400 Main Street, 4th Floor Cambridge, MA 02142-1017 Email: e2e@mit.edu
Tel: 510.642.9590	

Tel: 617.253.3551 Fax: 617.253.9845

MIT Energy Initiative

Coming Soon: Chicago Office

ENERGY INSTITUTE AT HAAS

Fax: 510.643.5180

