Appendix B: Technical Projection Tables

Table B-1: Biomass Volume and Price Projections through 2030

Feedstock	Feedstock Resource	2013 SOT	2017 Projection	2022 Projection	2030 Projection				
Category		MM Dry Tons							
Agricultural	Corn Stover	73.0	126.5	181.4	209.0				
Residues	What Straw	15.4	23.7	30.0	39.4				
Energy	Herbaceous Energy Crops	-	12.7	45.1	70.6				
Crops	Woody Energy Crops	-	-	11.7	25.8				
Forest	Pulpwood	8.9	6.0	13.1	40.1				
	Logging Residues and Fuel Treatments	54.4	54.7	58.9	64.0				
Residues	Other Forestland Removals	2.2	1.8	2.4	2.7				
	Urban and Mill Wood Wastes	26.1	26.2	28.5	31.5				
Totals (MM D	Totals (MM Dry Tons/Year)		251.7	371.1	483.0				
Average Price	e to Reactor (2011\$/Dry Ton)	\$ 102	\$ 80	\$ 80	\$ 80				

B-1 Last updated: July 2014

Table B-2: Algal Lipid Upgrading Supply and Logistics Key Process and Cost Metrics*

Algal Lipids Upgrading	Processing Area Cost Contributions and Key Technical Parameters								
Process Concept: Open Pond, Wet Solvent-Based Lipid Extraction	Metric	2010 Baseline	2014 Projection	2018 Projection	2022 Projection				
Total Algal Feedstock Cost	\$/GGE Algal Oil	\$18.22	\$13.13	\$6.30	\$3.27				
Production Cost	\$/GGE Algal Oil	\$15.60	\$11.18	\$5.17	\$2.63				
Harvest Cost	\$/GGE Algal Oil	\$2.99	\$2.52	\$1.65	\$0.67				
Preprocessing Cost	\$/GGE Algal Oil	\$1.72	\$1.56	\$1.11	\$0.77				
Recycle/Coproduct Credit	\$/GGE Algal Oil	-\$2.08	-\$2.14	-\$1.63	-\$0.80				
Yields									
Gross Biomass Production	Ton AFDW/Acre-Year	19	29	37	44				
Net Extracted Algal Oil Yield	Gallons/Acre-Year	1,040	1,580	2,500	5,260				
Production									
Total Cost Contribution	\$/AFDW Ton	\$916.20	\$656.47	\$384.48	\$343.19				
Capital Cost Contribution	\$/AFDW Ton	\$650.89	\$436.34	\$207.46	\$174.54				
Operating Cost Contribution	\$/AFDW Ton	\$265.31	\$220.13	\$177.02	\$168.65				
Algal Productivity (Annual Average)	Gram/Square Meter-Day	13.2	20	25	30				
Lipid Content	Dry wt%	25%	25%	30%	50%				
Aggregate Pond Area per Facility	Hectare	4,050	4,050	4,050	4,050				
Operating Days per Year	Days	330	330	330	330				
Concentration at Harvest	Gram/Liter	0.5	0.5	0.5	0.5				
Harvest									
Total Cost Contribution	\$/AFDW Ton	\$175.39	\$148.27	\$123.10	\$87.21				
Capital Cost Contribution	\$/AFDW Ton	\$71.57	\$59.62	\$47.28	\$30.13				
Operating Cost Contribution	\$/AFDW Ton	\$103.83	\$88.65	\$75.82	\$57.08				
Gross Harvesting Efficiency	%	77%	85%	90%	95%				
Net Harvesting Efficiency	%	95%	95%	95%	95%				
Final Concentration	Gram/Liter	200	200	200	200				
Harvesting Capex	\$/Million Gallon of Culture per Day from Cultivation	\$169,000	\$152,100	\$126,750	\$84,500				
Harvesting Opex	\$/Million Gallon of Culture from Cultivation	\$88	\$79	\$66	\$44				
Preprocessing									
Total Cost Contribution	\$/GGE Algal Oil	\$1.72	\$1.56	\$1.11	\$0.77				
Capital Cost Contribution	\$/GGE Algal Oil	\$0.88	\$0.84	\$0.58	\$0.27				
Operating Cost Contribution	\$/GGE Algal Oil	\$0.84	\$0.72	\$0.53	\$0.51				
Net Extraction Efficiency	%	86%	86%	90%	95%				
Flow Rate from Harvesting to Preprocessing	Gallon/Minute Harvested Slurry @200 Grams/Liter	471	715	893	1071				
Extraction CAPEX	\$/[Ton Algal Biomass/Day to Extraction]	\$36,500	\$32,900	\$27,400	\$18,300				
Extraction OPEX	\$/Ton Algal Biomass to Extraction	\$12	\$11	\$9	\$6				
Recycle/Coproduct Savings	0.005 11 100	00.77	00.4		00.55				
Net Cost Savings	\$/GGE Algal Oil	-\$2.08	-\$2.14	-\$1.63	-\$0.80				
N Recycle	Gram N/Kilogram of Algae	57	57	57	57				
P Recycle	Gram P/Kilogram of Algae	4	4	4	4				
CO₂ Recycle	Gram CO ₂ /Gram Algae Grown	0.71	0.71	0.64	0.39				
Digestate Coproduct Credit	\$/GGE Algal Oil	-\$0.05	-\$0.05	-\$0.04	-\$0.02				
Internal Power Generation (e.g. Reduction in Purchased Grid Power)	Kilowatt Hour/Kilogram of Algae	0.60	0.60	0.54	0.33				

* Davis, et. al. (2012). Renewable Diesel from Algal Lipids: An Integrated Baseline for Cost, Emissions, and Resource Potential from a Harmonized Model. Available at: http://greet.es.anl.gov/publication-algae-harmonization-2012.

B-2 Last updated: July 2014

Table B-3: Unit Operation Cost Contribution Estimates (2011\$) and Technical Projections for Thermochemical Conversion to Gasoline and Diesel Baseline Process Concept¹

(Process Concept: Wood Energy Crop, Fast Pyrolysis, Bio-Oil Upgrading, Fuel Finishing)

Processing Area Cost	,	<i>'</i>	<u> </u>	, ,	Tolysis, Dio O	"				
Contributions & Key							2014	2015	2016	2017
Technical Parameters	Metric	2009 SOT	2010 SOT	2011 SOT	2012 SOT	2013 SOT	Projected	Projected	Projected	Projected
Conversion Contribution	\$/gal gasoline blendstock	\$12.40	\$9.22	\$7.32	\$6.20	\$4.51	\$4.02	\$3.63	\$2.96	\$2.44
Conversion Contribution	\$/gal diesel blendstock	\$13.03	\$9.69	\$7.69	\$6.52	\$5.01	\$4.46	\$4.03	\$3.29	\$2.70
Conversion Contribution, Combined Blendstocks	\$/GGE	\$12.02	\$8.94	\$7.10	\$6.02	\$4.59	\$4.09	\$3.69	\$3.01	\$2.47
Programmatic Target	\$/GGE	\$3	\$3	\$3	\$3	\$3	\$3	\$3	\$3	\$3
Combined Fuel Selling Price	\$/GGE	\$13.40	\$10.27	\$8.26	\$7.04	\$5.60				\$3.39
Production Gasoline Blendstock	mm gallons/yr	30	30	30	30	29	29	29	29	29
Production Diesel Blendstock	mm gallons/yr	23	23	23	23	32	32	32	32	32
Yield Combined Blendstocks	GGE/dry U.S. ton	78	78	78	78	87	87	87	87	87
Yield Combined Blendstocks	mmBTU/dry U.S. ton	9	9	9	9	10	10	10	10	10
Natural Gas Usage	scf/dry U.S. ton	1,115	1,115	1,115	1,115	1,685	1,685	1,685	1,685	1,685
Feedstock										
Total Cost Contribution	\$/GGE fuel	\$1.38	\$1.33	\$1.17	\$1.03	\$1.01				\$0.92
Capital Cost Contribution	\$/GGE fuel	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00				\$0.00
Operating Cost Contribution	\$/GGE fuel	\$1.38	\$1.33	\$1.17	\$1.03	\$1.01				\$0.92
Feedstock Cost	\$/dry US ton	\$106.92	\$102.96	\$90.57	\$79.71	\$88.10				\$80.00
Fast Pyrolysis										
Total Cost Contribution	\$/GGE fuel	\$0.97	\$0.93	\$0.91	\$0.90	\$0.78	\$0.78	\$0.77	\$0.76	\$0.76
Capital Cost Contribution	\$/GGE fuel	\$0.82	\$0.79	\$0.76	\$0.75	\$0.66	\$0.65	\$0.65	\$0.65	\$0.64
Operating Cost Contribution	\$/GGE fuel	\$0.15	\$0.15	\$0.15	\$0.15	\$0.12	\$0.12	\$0.12	\$0.12	\$0.11
Pyrolysis Oil Yield (dry)	lb organics/lb dry wood	0.60	0.60	0.60	0.60	0.62	0.62	0.62	0.62	0.62

¹ Jones, S. et al. "Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway." PNNL-23053. (2013). Richland, WA: Pacific Northwest National Laboratory. http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-23053.pdf.

B-3

Processing Area Cost Contributions & Key Technical Parameters	Metric	2009 SOT	2010 SOT	2011 SOT	2012 SOT	2013 SOT	2014 Projected	2015 Projected	2016 Projected	2017 Projected	
Upgrading to Stable Oil via Multi-Step Hydrodeoxygenation/Hydrocracking											
Total Cost Contribution	\$/GGE fuel	\$10.07	\$7.05	\$5.23	\$4.17	\$2.88	\$2.39	\$2.01	\$1.35	\$0.95	
Capital Cost Contribution	\$/GGE fuel	\$0.71	\$0.68	\$0.66	\$0.65	\$0.59	\$0.57	\$0.51	\$0.45	\$0.42	
Operating Cost Contribution	\$/GGE fuel	\$9.36	\$6.37	\$4.57	\$3.52	\$2.29	\$1.82	\$1.50	\$0.90	\$0.52	
Annual Upgrading Catalyst Cost, mm\$/year	WHSV, ² number of reactors, catalyst replacement rate, and \$/lb	512	344	243	184	130	100	80	43	19.4	
Upgraded Oil Carbon Efficiency on Pyrolysis Oil	wt%	65%	65%	65%	65%	68%	68%	68%	68%	68%	
Fuel Finishing to Gasoline a	ind Diesel via Hyd	rocracking an	d Distillation					ı			
Total Cost Contribution	\$/GGE fuel	\$0.25	\$0.24	\$0.24	\$0.24	\$0.25	\$0.25	\$0.24	\$0.24	\$0.14	
Capital Cost Contribution	\$/GGE fuel	\$0.16	\$0.15	\$0.15	\$0.15	\$0.16	\$0.16	\$0.16	\$0.16	\$0.07	
Operating Cost Contribution	\$/GGE fuel	\$0.09	\$0.09	\$0.09	\$0.09	\$0.09	\$0.09	\$0.08	\$0.08	\$0.07	
Balance of Plant	Balance of Plant										
Total Cost Contribution	\$/GGE fuel	\$0.74	\$0.72	\$0.71	\$0.71	\$0.68	\$0.68	\$0.67	\$0.66	\$0.63	
Capital Cost Contribution	\$/GGE fuel	\$0.36	\$0.34	\$0.33	\$0.33	\$0.29	\$0.29	\$0.29	\$0.29	\$0.29	
Operating Cost Contribution	\$/GGE fuel	\$0.38	\$0.38	\$0.38	\$0.38	\$0.39	\$0.38	\$0.38	\$0.37	\$0.34	
Models: Case References		2009 SOT 090913	2010 SOT 090913	2012 SOT 090913	2012 SOT 090913	2013 SOT 122013	2014 P 122013	2015 P 123013	2016 P 123013	2017 P 093013	