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Presentation Outline 

 Project Objectives 
 Technical Approach 

 Parallelization of PSLF 
 Alternative DAE Modeling 
 Fast Contingency Screening  
 Oscillation Damping Control 

 Technical Accomplishments 
 Project Team 
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Project Objectives 

 Apply advances in high performance computing techniques 
to develop fast Contingency Screening and Control Action 
Engine (FSCAE) for proactive small signal stability 
assessment, prediction and control.  

Develop mathematical and high-performance computing 
(HPC) techniques applicable to power system fast dynamic 
simulation. 
Implement HPC techniques in power system dynamic 
simulation software 
Develop fast contingency screening method 
Develop oscillation damping control method 
Verify and validate speed enhancement of  dynamic 
simulation and decision making methods. 
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Technical Approach 
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Parallelization Approaches - Pros & Cons 

 Approach 1: Use 
parallelization under 
current PSLF architecture  

• Pros 

• Faster to implement 

• Less code changes 

• Cons 

• Speed gains are limited by 
the speed of slowest loop on 
current program 
architecture 

• Larger changes can be 
challenging and require 
significant modifications 

 

 

Approach 2: Alternative 
DAE modeling (implicit 
integration)  

• Pros 

• Expect greater speed gains 
than approach 1 

• Can be used as the basis for 
the development of other 
tools (small signal analysis) 

• Cons 

• Slower to implement 

• More code changes and more 
code development 

• Need to reformulate solution 
approach in PSLF 

 

 

 



Parallelization of PSLF 
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Challenges faced 

 Program is already well written and optimized 

 Complex program structure and legacy code (program has 

been written over 30 years) 

 Overhead costs of parallelization methods will adversely 

impact performance on small cases 

 Replacement of linear solver involves significant changes in 

the core  
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Selecting an appropriate solver for the 
problem at hand 

 Literature review (and preliminary results) have indicated 
that for current power system power system matrix sizes 

 Direct methods have superior performance over 
iterative methods 

 Serial solvers are faster than parallel ones 

 As problems grow larger, iterative methods are expected 
to outperform direct methods 
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PSLF core architecture improvements 

 The most effective way to reduce the solution speed of 
PSLF dynamics is a combination of two techniques 

 Parallelization of ODEs 

 Fast linear solver (Network) 

 Solver speed will be directly dependent on matrix sparsity 
structure and problem size 
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Preliminary results 

 Execution time of a 1s simulation on an real size system  

 
 

Run Serial Parallel (2 threads) Parallel (3 threads) 

1 11.10s 9.88s 10.22s 

2 11.91s 9.71s 10.15s 

3 11.60s 9.78s 10.21s 

Average 11.53s 9.79s 10.19s 

Gain - Reduction of ~15.1% Reduction of ~12.7% 

Conclusion: A more substantial performance gain 
will require additional modifications in the PSLF 

solution scheme 
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Linear solver replacement 

 Successful code replacement (large modifications in the 
program) 

 Solution accuracy confirmed on small case 
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Achievements 

 Current parallel implementation leverages existing architecture of 
PSLF 
 Faster to incorporate 
 Utilizes extensive model database 
 Reduces the chances of errors  

 Identification of faster solvers that could improve factorization 
speed significantly (nearly 30x) 

 Limitations on speed gains are mainly due to 
 Speed of serial loops conflicting with overhead costs in 

parallelization 
 System factorization may not occur many times, thus 

improvements in factorization may not be very noticeable 
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Lessons Learned 

 Speed improvements in the PSLF dynamic simulation 
 Code modularity facilitates future solver replacements 

(very important) 
 Additional functionality as a byproduct of effort 

 Understanding of current state of the art solvers 

For more substantial speed gains, a change is 
solution architecture is required (integration 

methods/DAE) 
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Parallelization Approaches - Pros & Cons 

 Approach 1: Use 
parallelization under 
current PSLF architecture  

• Pros 

• Faster to implement 

• Less code changes 

• Cons 

• Speed gains are limited by 
the speed of slowest loop on 
current program 
architecture 

• Larger changes can be 
challenging and require 
significant modifications 

 

 

Approach 2: Alternative 
DAE modeling (implicit 
integration)  

• Pros 

• Expect greater speed gains 
than approach 1 

• Can be used as the basis for 
the development of other 
tools (small signal analysis) 

• Cons 

• Slower to implement 

• More code changes and more 
code development 

• Need to reformulate solution 
approach in PSLF 

 

 

 



Alternative DAE Modeling 
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Motivations 

 Computationally intensive to perform dynamic 
simulations 
 Most commercial tools use explicit integration method, 

calculating differential and algebraic equations alternatively 
 A small time step is required to ensure numerical stability 
 A few times slower than real time 

 Research Objective 
 Faster-than-real-time dynamic simulation powered by 

HPC techniques 
 Implicit integration using Trapezoidal rule 
 A time stacking method 
 Faster linear solvers 
 Adaptive time stepping with much larger time steps 
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Advantages of Implicit Integration 

 Has better numerical stability 
 Enables larger time steps for simulation 

Modified Euler Method 
Max allowable time step: 

0.01 s 

Trapezoidal method 
Max allowable time step: 

0.134 s 

Tested on a 2-area system 
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Flowchart for Implicit Integration (Single 
Time Step) 

 Completed formulation 
and testing with 
classical generator 
models 

 Newton’s method is 
used 
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Proposed Approach 

 Development of a time-stacking method for solving 
multiple steps simultaneously 
 Combine discretized differential equation and 

algebraic equation 
 “Stack” multiple time steps for simultaneous solution 

Sequential time-stepping process: Time-stacking method: 



21 

Identification of Better Linear Solvers for 
the Time-stacking Method 

 An example of Jacobian matrix derived from the time-stacking 
method for a 16g68b system 
 Matrix properties: real, sparse, non-symmetric, non-diagonally dominant 

 With a large condition number: 8.668x10^6 

 

 

 

 

 

 

 Direct solver vs. iterative solvers (averaged 10,000 runs)   
 Sparse LU (UMFPACK): 0.0165 sec 

 BiCGSTAB + ILU preconditioner: 0.0190 sec (1 iteration, tol=1e-8) 

 GMRes + ILU preconditioner: 0.0266 sec (2 iterations, tol=1e-8) 

 It is expected iterative solvers outperform direct solvers for a 
much larger Jacobian matrix, using multiple processors 

 

Zoom-in view Size: 1280x1280, nnz=14016 
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Adaptive Time Stepping Method 

 The time step is adjusted based on 
 local error estimate 

 performance of the Newton corrector iteration 

 switching events and faults 

 Comprehensive logics used to adaptively change the time 

stepping 
 10%~30% speedup  observed from various testing 

ω 

Case 1: constant time step, 0.01s 
Case 2: adaptive time step, up to 0.1s 

δ 

1 1

P

n nk y y 
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Accomplishments & Ongoing Tasks 

 Accomplishments 
Proved the concept of the time-
stacking method using classical 
generator model 

Compared the computational 
complexity of using reduced and 
full admittance matrices 

3 times speedup observed when 
using full admittance matrix with 
implicit integration 

MATLAB code developed 

Tested and compared direct and 
iterative solvers 

Direct solver works best for 
solving I=Y*V, for the traditional 
explicit integration method, e.g., 
PSLF 

Iterative solvers perform equally 
well for the time stacking method 

Ongoing work 

Adding more detailed generator 

model and controllers to the 

software code 

GENTPJ, EXAC2, IEEEG1 

Jacobian matrices derived 

Developing parallel version of 

FORTRAN code for testing the 

computation speed 

Investigating techniques to 

improve convergence 

Better initial values 

Dishonest or very dishonest 

Newton’s method 

 



Fast Contingency Screening for 

Small Signal Stability 
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Small-Signal Security Assessment 

 Challenges & Need for Real-Time 

 Large number of contingencies 

 Long simulation time  

 Evaluating large number of 
contingencies using time-
domain simulations or 
eigenvalue computation is 
extremely time consuming & 
infeasible for large systems in 
real-time 

 Dimensionality; matrix 
inversion;  

 Assessment is not enough – for 
violating contingencies control 
solution is needed 

 

Today’s Practice 

 Small-signal stability analysis 
under set of contingencies for 
range of operating conditions 

 System is small-signal secure if 
damping/settling time of all 
critical oscillatory modes is 
within a required threshold 

 Offline study: during planning 
considering worst case system 
conditions (e.g. summer peak) 

 Brute force: Time domain or 
eigenvlaue analysis for all 
possible contingencies and 
conditions 
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Contingency Screening (16-machine e.g.) 
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Fast Contingency Screening & Ranking 

Block III – Estimate post contingency eigenvlaues 
based on 1st and 2nd order 

Block II –  Compute linearized system matrix 
(Apost) for each contingency 

Block I –  Compute linearized system matrix, 
eigenvalues & eigenvectors for base case 

𝐴𝑠𝑦𝑠 , 𝜆𝑖(0) , 𝜓𝑖  , 𝜙𝑖 

𝐴𝑝𝑜𝑠𝑡 

𝜆𝑖 𝑝𝑜𝑠𝑡 = 𝜆𝑖 0 + 
𝜕𝜆𝑖
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Results: Accuracy & Speed (16 machine 
system) 

Accuracy 

Speed 

 There are 6 

critical 

contingencies. 

 Algorithm 

identifies all 6 

and 2 additional 

contingencies. 

 Several times 

faster than full 

eigenvalue 

computation 

Next: How to resolve the violating contingencies during operation? 



Oscillation Damping Control 
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Re-dispatch based damping control: Key 
Questions 

 Which generators should increase output and which ones 
should decrease output? 

 Which generators will be more effective in impacting a 
certain mode? 

 What is the optimum amount of generation re-dispatch 
needed to damp the oscillation? 

 How to avoid negative interaction between multiple 
modes? 
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Mode Shape vs Sensitivities 

Mode No = 1   Freq = 0.370 Hz   Damping = 7.38%
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Re-dispatch ensuring post-contingency 
stability 

 Objective: Achieve a minimum settling time for post 
contingency condition after re-dispatch 

 Step I: Compute the sensitivities 
Δ𝜎

ΔP
 and 

Δ𝜔

ΔP
 for each 

generator under post-worst case contingency 
 Step II: First, the targeted change in the real part is 

determined by the equation  Δ𝜎𝑡𝑎𝑟𝑔𝑒𝑡 = 𝜎𝑝𝑜𝑠𝑡−𝑡𝑎𝑟𝑔𝑒𝑡 −
𝜎𝑝𝑜𝑠𝑡 
 Next the target of the base case sigma under post-dispatch condition is         

determined using the value of Δ𝜎𝑡𝑎𝑟𝑔𝑒𝑡 as 𝜎𝑡𝑎𝑟𝑔𝑒𝑡 = Δ𝜎𝑡𝑎𝑟𝑔𝑒𝑡 + 𝜎𝑏𝑎𝑠𝑒 

 Step III: Evaluate the dispatch command by QP to achieve 
𝜎𝑡𝑎𝑟𝑔𝑒𝑡  with constraints  

 Step IV: Run time-domain simulations for  a) under base 
case b) most critical contingency conditions. 



Accomplishments 



34 

Accomplishments 

 Parallelization implementation in existing PSLF structure 
using (~15% speed gain with 2 cores)  

 Compared several linear solver implemented the best 
performing solver in PSLF. 30 times factorization speed 
improvement. 

 Developed implicit integration method with time-
stacking approach and preliminary implementation with 
classical generator model. 

 Developed new approach for fast contingency screening 
for small signal stability (IEEE PES GM 2014 Paper) 

 Developed new approach for oscillation damping control  



Project Team 
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