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Operational challenges in renewable incorporation

CIGRE -International Conference on Large High Voltage
Electric Systems '09:

e Large, random fluctuations in wind power must be balanced by other
power sources, possibly located far away

e This causes large power flows through the transmission system
e  Control is difficult — e.qg. flow reversal observed

e  Expand transmission capacity? Difficult, expensive, takes time
Problems already observed when penetration is high

e Our work: to develop a robust control scheme that is
foundationally strong, computationally practicable and
easy to incorporate into existing power engineering
practice



Presentation Outline

Project purpose: develop robust, modern
mathematical methodologies for use in grid
operations, principally OPF and Unit Commitment

Significance and Impact: safe, economic operation of
the grid under high renewable penetration and high
transmission levels

Technical approach: use of chance-constrained and
robust optimization; fast optimization algorithms

Technical accomplishments (so far): a fast, scalable,
robust chance-constrained optimization approach that
scales well to real-world power transmission systems.



OPF:

s.t.

min ¢(p) (a quadratic)

B =p—d (1)
y;i(0; — 0;)] < wu;; for each line ij (2)
P;"i” < pg < P for each generator bus g (3)
Notation:
p = vector of generations € R", d = vector of loads € R"
B € R"™", (bus susceptance matrix)

—Yij, ij € & (set of lines)
Vi,j: Bj= Zk;{k,j}es Ykj =]

0, otherwise



OPF + Real-Time Control

min c(p) (a quadratic)
&
BO =p—d
lvij(6; — 6;)| < uj; foreach line jj

min max
Pg < pg < Pg for each bus g

How does OPF handle short-term fluctuations in demand (d)?
Frequency control:
e Automatic control: primary, secondary

e Generator output varies up or down proportionally to aggregate change
Each participating generator has its own preset constant



Experiment—OPF + Real-Time Control

Bonneville Power Administration data, Northwest US
m data on wind fluctuations at planned farms
m with standard OPF, 7 lines exceed limit > 8% of the time




Line limits and line tripping

If power flow on a line exceeds its limit, the line becomes compromised and
may ‘trip’. But process is complex and time-averaged:

e Thermal limit is most common
e Thermal limit includes capabilities of terminal equipment

e Wind strength and direction contributes to line temperature. ‘Exact’ process
governed by heat equation (IEEE 738).

* |In 2003 Northeast U.S. and Canada blackout event, many critical lines tripped due to
thermal reasons, but well short of their limits.

Take away:

Extremely difficult to precisely model line tripping as a function of line overloads.



Practicable proxy for line protection

e Summary of above: it is bad for a line to exceed
its limit for too long; exact process complex and
data-challenging

e Want: "fraction time a line exceeds its limit to be
small”

* Proxy: Prob(violation onlinei) <g, for each line i



Goals for Control Under Uncertainty

Familiar control: if possible, similar to current power
engineering practice

Aware of line and generator limits, through chance
constraints, i.e. probabilistic reliability

But not too conservative

Computationally practicable: should run fast on a current
workstation even on large examples



Model for Real-Time Control Between OPFs

The control specifies, for each generator i, two parameters

e Pi =mean output ati
« (Yj=response parameter, nonnegative

Real-time output of generator i :

pPi = ﬁ,- = X ZAuJJ
J

Here Aw‘j = deviation from mean output of renewable j. We impose
E &; = 1
i

to emulate the action of primary and secondary frequency control

Parallels existing engineering practice, BUT we optimize over the control parameters in
risk-aware fashion (chance constraints)
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Computing line flows, under DC approximation

B = bus susceptance matrix, B T pseudo-inverse of B

wind power at bus 7: f; +@\
Wind generation fluctuations

DC approximation
mBO=p—d
+p+w— (D ccWi)a
mO=B"(p—d+pu)+B (I —ae’)w

m flow is a linear combination of bus power injections:

fij = yi(6i — ;)

Boldface = random variables
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Computing fluctuating line flows, under DC approximation

=i (B = B)(p—d+p) +

— BT+ T
A=B (I — af ) Fluctuating power flows due to
wind and system response

Given distribution of wind can calculate moments of line flows:

m Efj = yU(BI“L — BJ-_*_)T([_) —d + p)
m var(fij) = v; Dk (Aik — Ajik)?of;  (assuming independence)

m and higher moments if necessary
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From chance constraints to deterministic model

m chance constraint: P(f; > £) < ¢; and P(f;; < —f;7) < ¢;

m from moments of f;j, can get conservative approximations using e.g.
Chebyshev's inequality

m for Gaussian wind, can do better, since fij Is Gaussian :

|Efij| I var(f;j)(_b“l (]_ — 5ij) & fq{nax
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Chance Constrained Optimal Power Flow

Choose control parameters so as to minimize expected cost, with overload probability kept small

m'n]E[C(P)] Min Cost
s.t. Z aj=1 >0 Freq. regulation model
ieG
Bl =m0, =D
Zﬁ-‘ + Z 1 = Z d; Avg. power balance
icG ieWw ieD
?'J == (9 —0; ) Line flows
Bl — P+ u—d, 6',,—0 DC power flow
55- - yg Z ak(B Bjk S 5])2 Auxiliary constraint
keW

gm g —]1 max
fii| + sio™ (1 —€5) < £ Chance constraint
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Polish 2003-2004 “winter peak”

2746 buses, 3514 branches, 8 wind sources

5—-20 % penetration, ¢ =.3u at each wind
source

Formulation has 36625 variables
38507 constraints, 6242 conic constraints
128538 non-zeros, 87 dense columns

Piece of cake?
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Polish 2003-2004 “winter peak”

CPLEX:
e Total time on 16 threads = 3393 seconds

e “optimization status 6”

e Solution is very infeasible

Gurobi:
e Time =31.1 seconds

e “Numerical trouble encountered”
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Basic cutting-plane algorithm

conic constraint:

V3t x =l <y

candidate solution:
(x*, y")
cutting-plane (linear constraint):

X*T X*TX
e ) = o =

Xl + = =
Ix*][2

Reduces conic program to a sequence of linearly constrained QPs
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Basic cutting-plane algorithm

Polish 2003-2004 case
CPLEX: infeasible after 3300 seconds
Gurobi: “numerical trouble”

Cutting-plane algorithm: 33 seconds

lteration Max rel. error Objective

1 1.2e-1 7.0933e6
4 1.3e-3 7.0934e6
7 1.9e-3 7.0934e6
10 1.0e-4 7.0964e6

12 8.9e-7 7.0965e6
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Back to motivating example

BPA case:
e Standard OPF: cost 235603, 7 lines unsafe > 8% of the time

e CC-OPF: cost 237297, every line safe > 98 % of the time

e Runtime =9.5 seconds
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Robustness? Data errors? Model error?

2 2 9 i i
keW
[Fil + 5567 (1 €5) < fm=

(the f; implicitly incorporate the 1)

What if the p; or the oy are incorrect? ... What happens to

Prob(fij > f,"™)7?
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Robustness? Data errors? Model error?

Let the correct parameters be ji;, &; for each farm i.

Theorem: Suppose there are parameters M > 0, V > 0 such that
i — il < Mp; and | 57 — 0| < Vo
for all i. Then:
Prob(f; > £") < €; + O(V) + O(M)

Here, the O() “hides” some constants dependent on e.g. reactances

In other words, model deteriorates in a controlled manner.

How about small data errors?
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Robust optimization

Polyhedral data error model:

51— ol < v Vi, Z""

Ellipsoidal data error model:

(5 —0)TA(G—0) < b

Here A > 0 and b > 0 are parameters.
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Robust handling of chance constraints

Nominal case:  |Efj| + var(fj)o~ (1 —¢j) < £
— a conic constraint
Robust case:  maxg {|E | + var(fj)o~" (1 —¢)} < 7

( £ : data error model)
How do we solve the robust-constrained case?

Traditional robust-optimization (duality) approach yields a
nonconvex problem

Theorem. The robust problem is a convex optimization problem and can
be solved in polynomial time in the polyhedral and ellipsoidal data cases.

An “ambiguous chance-constrained problem”
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Conclusion

Chance Constrained Optimal Power Flow is a control
formulation/algorithm that enables:

Computationally practicable probabilistic reliability: No
sampling required—runs large examples on current
workstations

Fully network aware: Considers all individual lines and
generators

Integrates with current practice

Tunable conservatism
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Future Work—FY15

Time-extended formulation: Chance constraints on
individual generator ramping between OPF periods

Fluctuating voltage magnitudes: Increasing levels of
sophistication of approximations to voltage fluctuations

e Full linearization

e Multi-linear convexification

e Quadratic convexification

e In collaboration with U. of Michigan (lan Hiskens)
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