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Outline of the Talk

Project I: Power System Control and Optimization

Project II: Optimization Methodologies for Large-Scale Power Systems



Project I: Power System Control and
Optimization

Project purpose: The purpose of this project is
to enhance the reliability and economics of the
power grid by advanced optimization methods.

Technical Challenges:

 Uncertainty and variability of renewable generation

* Integrated transmission and distribution analysis

 Dynamic line rating

e Complexity of power system operation and
optimization (non-linear, large networks, multi-
timescale, stochastic, etc.)




Classical Stochastic Optimization Approach

 Two-stage stochastic UC: large-sized (renewable power)
scenarios.
— Stochastic UC formulations. (Philpott 06, Sen 06)
— Active management of uncertainties.
(Bouffard and Galiana 08, Ruiz et al. 09, Wang et al. 08, Oren et al. 10)
— Chance constrained optimization (Wang et al. 12, 133, 13b)

* Potential challenges:

— How to precisely estimate the (joint) probability distributions?
— How to solve the large-sized extensive formulation?
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Robust Unit Commitment

Robust optimization concept

An uncertainty set that can capture the wind power “ramp” events
A robust optimal solution that minimizes the total cost under the worst wind power

fluctuation, while ensuring high utilization of wind power

(NOM)

min c(y) + f(x)
st. Ay <b
Gx + Hg < d
Wy + Tx < h
y € {0, 1}

Objective function:
— c(y) represents the start-up/shut-down

and fixed costs.

— f(x) represents the fuel and

operational costs.
Constraints:

— Min-up/-down time, start-up/shut-
down operations, and system spinning
reserves.

— Power flow balance, transmission
capacity limits.

— Power generation upper/lower bounds
and ramp-rate limits.



Two-Stage Robust UC Model

e To minimize the total cost under the worst-case
scenarios.

* Describe renewable output by an uncertainty set D.

* Problem decomposed into two stages:
— 15t stage: UC decisions.

— 24 stage: economic dispatch under the worst-case
scenario.

in R(y)= in f
min  R(y) = c(y) + max Sl (x)
(RUC) s.t. Ay < b,
y €{0.1}.

Notation : X(y.q) = {x : constraints (2) and (3)}




Uncertainty Set Definition

* Each renewable output ¢,, running in interval

n 1% n u
[th - th ’ th + th] .
— E.g., the interval can be generated based on .05- and .95-percentiles of
Dpr .
— Z;z describe the magnitude of increase/decrease from the forecasted

value.

* Integer I, €[0,7'] restricts the number of deviations:
— I,=0—all 4, =9,; T, =27 — all 4 free.
— I, : “budget of uncertainty.”

Uncertainty set

-
D .= {q e RIBIXT . Z(Zf{t—l—zb_t) < Iy,

t=1

Goc = Qs + 25 Qb — 20z Qs Ve, Vb€ B}




Reformulation of the 2nd-Stage Problem

77,4 dual variables, N dual feasible region.
* The 2"d-stage problem < a bilinear program.

R —=c(y) +max min f(x
() =ely) + max min f(x)

- T(d — H AN (h— W
c(y) + e (nfg)agN{n ( q)+ A ( V)

T T T T
—=C + max —n'Hg— XN Wy+n'd+ )\ h
(¥) (qﬂmww{ n' Hq y +1 }

=c(y) +0(y),

where @ — max —nTHg = \"W +'Td+)\Th}.
(v) (q.7;.>\)erN{ n' Hq v+




Benders’ Decomposition Algorithm

* Benders’ decomposition framework

— Solve the bilinear sub-problem.
— Add any violated constraints (4) as Benders’ cuts.
(RUC)

min c(y)+6(y)

s.t. Ay <b
0(y) > —(A" W)y +(n"d—n"Hg+A"h).
Y(g,n,A\) € D x N.




Simulation Results : IEEE 118-bus System

Hydro capacity

: RatIO = Average renewable output
* I =Budget of uncertainty

* Opt. Gap: optimality gaps
* WV Gap: worst-case
performance difference

between robust UC and
deterministic solutions

Ratio r
2 4 6 8 10
Opt. Gap(%) | 0.06 | 0.09 | 0.09 | 0.10 | 0.08
0 | WV Gap(%) | 8.10 | 14.06 | 18.02 | 20.32 | 20.32
Time (s) 194 | 353 578 | 1024 | 1876
Opt. Gap(%) | 0.08 | 0.09 | 0.10 | 0.10 | 0.09
0.1 | WV Gap(%) | 7.52 | 12.77 | 15.57 | 16.41 | 16.40
Time (s) 101 | 309 546 997 542
Opt. Gap(%) | 0.08 | 0.07 | 0.08 | 0.08 | 0.08
02 | WV Gap(%) | 7.97 | 11.78 | 14.70 | 16.23 | 16.32
Time (s) 145 | 331 008 | 1852 | 2053
Opt. Gap(%) | 0.09 | 0.08 | 0.09 | 0.09 | 0.10
0.3 | WV Gap(%) | 7.05| 12.11 | 1452 | 16.36 | 16.46
Time (s) 178 | 361 736 | 1116 | 3101
Opt. Gap(%) | 0.08 | 0.09 | 0.08 | 0.09 | 0.10
04 | WV Gap(%) | 6.07 | 9.87 | 12.00 | 12.98 | 13.12
Time (s) 218 | 463 | 1113 | 1446 | 1141
Opt. Gap(%) | 0.08 | 0.09 | 0.09 | 0.09 | 0.07
05| WV Gap(%) | 5.65| 9.29 | 11.33 | 12.30 | 12.49
Time (s) 178 | 686 | 1114 | 995 | 3504




Integrated Transmission and Distribution Analysis

I o

Increasing DG penetration and Arizona-Southern California outage on Sep. 8, 2011, etc.
Traditional contingency analysis (CA) may give wrong alarms when a transmission power
system (TPS) is connected with an electrically looped distribution system (DPS).

* A new global power flow based CA method (GTCA) is proposed to solve this problem.
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A global power flow in which both the TPS and DPS power flow are
solved is used to reflect the transmission and distribution interactions

Global Power
Flow
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Key Findings

A number of numerical examples including IEEE 5, 14, 30, 118 bus systems
have been tested to show the difference of the two CA methods

Numerical simulations validate the accuracy and convergence of the proposed
method, in particular when the distribution grid has loops or distributed

generators.

For a 6-bus TPS connected with a 3-feeder DPS with 2 loops, 2 wrong alarms are
given by the traditional CA.

For a 118-bus TPS connected with a 6-feeder DPS with 3 loops, 5 wrong alarms
are given by the traditional CA.

If the DPS is radial, the difference of the two CA methods is not big, but can lead
to the overlook of the potential overloading occasionally as well.

The running time of GTCA is longer than traditional CA, but that can be further
shortened by several techniques like screening.




Dynamic Line Rating (DLR)

Transmission lines connect
generation and demand

Line rating: the maximal allow-
able flow on a transmission line

Static line rating is conservative
— Capacity in green zone is wasted

Dynamic line rating may provide
additional transmission capacity
at no cost

— Monitor real-time ambient
environment (e.g., temperature,
wind speed, line tension)

— Forecast real-time transmission
capacity
— Alleviate transmission congestion
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Source: http://www.neuralenergy.info/2009/06/circuit-ratings.html 13



A Binary Rating Forecast

* A binary rating forecast (Nexans - The Valley Group)
— Forecast whether there will be certain amount of extra capacity on a line

— Example: there is a 95% chance of 15% or more extra capacity above the
static rating on line ¢ Action x

Use Not Use

* Forecasts can be wrong !

— x = 1 represents that forecasted
rating is used

— When (gl =0,z = 1),
overloading occurs

Benefit Missed

Ture

Forecast @

FALSE

* System-level overloading risk -
— Forecasting errors on different lines can be correlated
— Overloading on multiple lines may lead to cascading blackouts

— Arisk measure at the system level (The probability that more than k lines
are overloaded )

14

V



Modeling the Overloading Risk

Model the random events
— Forecast error: Bernoulli random number, ay, = 1 represents error occurs
— If (1 — a@y)xy = 1 then overloading occurs on line £

A reliability requirement

P := P(more than k lines are overloaded) = ]P(Z(l —ag)ry > k+1) <e,

teL
Exact evaluation of the risk P:is not practical

— Incomplete distribution information in practice, i.e., only joint distributions up to
level m are known, e.g., marginal and pair-wise joint distributions (m = 2)

Risk requirement becomes ambiguous with incomplete information
— Incomplete distribution information defines a family P of distributions
— Which distribution function to use to evaluate the risk?

A distributionally robust perspective (worst-case logic)

sup{Pe (D> (1 —dg)ze > k+1)} <e
§EP el

— No ambiguity but still difficult to characterize 15



A Deterministic Approximation

An inner approximation
_Let U(z) > F(z) :== SUpgeP{Pﬁ(ZeeL(l —agt)ree 2 k+1)}

—Let X := {z € {0,1}/F1: F(2) < €} and X := {2 € {0,1}/1 : U(x) < €}.
Then

X C X.
Calculation of U(z) [Prekopa 1990]

— Let so(z) = 1, si(w >—ZCCL.|C| ;¢ [ljec @j; and (§) =1; vi > 0

Ul(x )—maux{z7 ki1 Vj Z|L| (Nv; = si(z) i = 0..m}

Linearization

— Let 7 € R™t! be the dual multipliers for the maximization problem
X={zec{0, 1}V . IneR™ :7TS(x)<en'T>el}.

— WTS(CU) can be linearized by McCormick linearization

— Now X can be formulated as a mixed-integer linear program e



Congestion Management with DLR

* Congestion management
— Only consider economic dispatch
— Dynamic line rating forecasts for the line capacities

* Only use dynamic ratings of those lines that
— reduce congestion most effectively
— do not exceed system overloading risk requirement

e Mathematical formulation
min Z Z cqg(pg.t) + Z Z P tQnt
geG teT neN teT

s.t. G(pg,t:Pe,tsqn,t) > 0
- SLRg . (1 + Oég,til’)g,t) S Pet S SLRg . (1 + Oég7t$g7t) \V/g e L YVt e’T

sup IPg(Z(l —agt)res > k+1) | <e=7'S@)<en'T>el
&P (el



MILP Formulation

min Z Z ey (Pyut) -+ Z Z B et <— Objective

geG teT neN teT

s.t. G(pg,t,Pe,t>qn,t) =0
— SLRy - (1 -+ ag’txg,t) < Dot < SLRy - (1 -+ ag,txg’t) V¢ € L YVt € T'<— DLR

m .
7T0t—|—z<2)7rht§e§€ 1=1,..n,teT )
h=i

<— Dispatch Const.

m — Risk Req.
moe+ Y > plye, =6t el
h=1cC,eT} —
ye < Mz, VjeC,NC, eI h=1,..,mteT
ygt > M, x; Vje C,VC eZ" h=1,..m,teT
ygt < mpe — M, (h — Z xj) VC € I h=1,..mteT — Linearization
JjelCy
Y&, = e — MiF(h— > x;) VG, €I h=1,..,mteT
Jjedly _
< 0; —1,...,n; y* hh=1,..
ot < 0; mpe free h =1,...,n; yo, free VO € Z)),h = 1,...,m } Var. Bounds
wes € 10,1} 09,6, Gn,e > 0.

where Z' :== {S C {1,...,n} : |S| = h} 18
18



Case Study — Load Shedding Reduction

Experiment settings

— m=2,i.e., only marginal and pair-wise joint distributions are available

— k =3, evaluating the overloading risk on 3 or more lines
— Two sets of forecasting data:

1) lower ratings (15% over static rating) with higher confidence levels

2) higher ratings (30% over static rating) with lower confidence levels

— Significant load shedding reduction achieved on the IEEE 73 (RTS 96)-
bus system €

67% 0.007

0.15
0.05 69% 6.25 0.016
0.01 68% 3.25 0.009

0.3
0.05 80% 5.00 0.030

K-Overloading risk: an upper bound on the actual overloading risk of more than k lines

19



Collaboration and Outreach

Publications - more than 20 IEEE Transactions and journal papers
and a number of conference presentations. Work also widely cited
(more than 100 citations in the past two years)

Invited seminars and talks — more than 10 including the ones at
FERC, IBM, Northwestern University, University of Sydney, lowa
State, Sandia National Labs, University at Buffalo

Professional community involvement— Editor for 9 academic
journals (e.g., IEEE Transactions on Power Systems, IEEE
Transactions on Smart Grid), guest editor for 10 special issues for
various journals, Chair of the IEEE Power and Energy Society Power
System Operational Methods subcommittee and panel session
chair for the past 5 years

Collaboration - working closely with the other Argonne divisions
(e.g., MCS), industry (e.g., PIM, Alstom Grid) and other research
institutions (e.g., University of Florida, Auburn University,
University of Tennessee, Tsinghua University)



Representative Publications

B. Chen, J. Wang, L. Wang, Y. He, Z. Wang, Robust Optimization for Transmission Expansion
Planning: Minimax Cost vs. Minimax Regret, IEEE Transactions on Power Systems, In press.

L. Fan, J. Wang, R. Jiang, Y. Guan, Min-Max Regret Bidding Strategy for Thermal Generator
Considering Price Uncertainty, IEEE Transactions on Power Systems, In press.

C. Liu, J. Wang, Y. Fu, V. Koritarov, Multi-area Optimal Power Flow with Changeable
Transmission Topology, IET Generation, Transmission & Distribution, In Press, 2014.

Y. Guan, J. Wang, Uncertainty Sets for Robust Unit Commitment, IEEE Transactions on
Power Systems, In Press.

R. Jiang, J. Wang, M. Zhang, Y. Guan, Two-Stage Minimax Regret Unit Commitment
Considering Wind Power Uncertainty, IEEE Transactions on Power Systems, Vol. 28, No. 3,
pp. 2271-2282, 2013.

C. Zhao, J. Wang, J.P. Watson, Y. Guan, Multi-Stage Robust Unit Commitment Considering
Wind and Demand Response Uncertainties, IEEE Transactions on Power Systems, Vol. 28,
No. 3, pp. 2708-2717, 2013.

J. Wang, J. Wang, C. Liu, J. Ruiz, Stochastic Unit Commitment with Sub-hourly Dispatch
Constraints, Applied Energy, Vol. 105, pp. 418-422, 2013.

J. Ostrowski, J. Wang, C. Liu, Transmission Switching with Connectivity-Ensuring Constraints,
IEEE Transactions on Power Systems, In Press, 2014.

C. Zhang, J. Wang, Optimal Transmission Switching Considering Probabilistic Reliability, IEEE
Transactions on Power Systems, In Press, 2014,
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Interdependent Infrastructures

. L . . . 4 l
Natural Gas Transmission Electricity Transmission 7;:9/»

|\H1..?

Wind Supply

Supply

- Gas Pipelines Provide Storage Capacity to Mitigate Fluctuations (Ramps & Capacity)
- But, Gas Travels at 30-50 mph (Storage Has to be Built up Well in Advance)

- Aggressive Gas Withdrawals Cascade Upstream the Pipeline (Compromises Stability)

- Shortages of Natural Gas for Power Plants Occuring More Frequently



Emerging Behavior

Forbes Magazine Article on Polar Vortex in Midwest (Feburary, 2014)
http://tinyurl.com/mrvuqfl

— California’s electric grid operator asked power generators to reduce their gas usage. Southern California Gas
asked its customers to power down where possible.

— In Texas, which produces more natural gas than any other state, the Electric Reliability Council of Texas (ERCOT)
called a state of emergency on Thursday out of concern there wouldn’t be enough gas for power plants. Earlier in
the week ERCOT had asked to fire up two big coal-fired plants that are normally but on standby during the winter.

—In New England, tight supplies during the dreaded Polar Vortex caused the price of natural gas to soar 20-fold to
more than $100 per thousand cubic feet. Gas was in such short supply in late January that New England’s grid
operators told power generators to fire up not just their coal burners, but even their peaking plants that run on oil
and even jet fuel.



Questions & Technical Challenges

- Economic Questions: Do Markets Spread Risk & Incentives in a Fair Manner?

- Reliability Questions: How to Characterize Uncertainties? How to Mitigate Them?

- Complexity: Nonconvex, Mixed-Integer, Huge Networks, Huge Probability Spaces

- Emerging Features: Multi-Scale, Multi-Physics, Stochastic, Optimal Control, Networks



Parallel Interior-Point Solver (PIPS)

Interior Point Algorithm
Convex Multi-Stage Stochastic Programs

Stochastic Economic Dispatch for Illinois with

32K
1

Up To 2 Billion Variables & 10,000 Scenarios Solved in
Under an Hour

- Linear
—— PFIPS

16K

Pushed Advances in Numerical LinearAlgebra Library
PARDISO (O. Schenk)

\%

< Argonne’s Blue Gene/P
32,000 Nodes

96%

/

 98%

* 99% BG/P Intrepid
MPHSMP
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2 — =
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Stochastic Day-Ahead Market Clearing

min e :=F
dj,Dj(')7gi7Gi(')7f€7F€(')

D a?Gi(w) + A |Gi(w) — gi|]
1€G

—E [Z afD;(w) — Aad|Dj(w) — dj]

jED

+E | Aoy |Fi(w) - fd]
el
S.t. fo— Z fg+Zgi—Zdi:0, () neN
leLrece feLsnd i€Gn i€Dy,
Y (Fw)—fo— Y (Fuw) = fo+ > (Gi(w) —g:)
LELTee teLsnd i€Gn
— Y (Djw) —dj) =0, (P, (w)) weEQneEN
JE€D,

- Deterministic Clearing Induces Price Distortions That Bias Incentives & Revenue Adequacy
- New Stochastic Clearing Formulation Guarantees Fairness & Revenue Adequacy



lllustrative Study : Wind Uncertainty

G =100
a =100

G(w) = {10,20,60,70,90} G(w) = {10, 20,60, 70,90}
a=1 a=1
F =100
G =100 G = 50
a =100 a = 200
a = 1000
D(w) ~ N(250,50)
Social Surplus  Per Node Premia Day-Ahead Prices
©» . v

n
Deterministic  -217529 {9,9,9,-205,-208,-273} {100,100,100,100,100,100}
Stochastic -217628  {0.001,0.001,0.001,0,0,0} {96,96,96,307,310,374}
Stochastic-WS  -218266 - -



lllustrative Study : Transmission Contingencies

G =100

a =100

G(w) = {10, 20,60, 70,90}

a=1

a=1

F =100

G =50
a = 200

G =100
a =100

a = 1000

D(w) ~ N (250, 50)
Payments ISO Revenue

E[P!(w)] E[CY (w)] M5O

Deterministic  {5803,4723,5100,-919,9627}  {5231,50,3876,47,3387} 40570
Stochastic  {5107,3955,3683,7371,9623}  {5107,51,3683,46,3383} -118103
Stochastic-WS  {4951,3888,3422,7170,9479}  {4951,47,3422,45,3079} -118283




Computational Study : lllinois
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Computational Study : Uncertainty Characterization Illinois

- How To Characterize Uncertainty? Central vs. Distributed?
- What if ISO Neglects Long-Range Correlations?

790K -

~

0]

o

-~
T

Dispatch Cost [USD]

770k

760k

Predicted (Corr)

Predicted (Indep)

Realized (Corr)

Realized (Indep)
| |

* % O O

|
16 32 64 128 256

Number of Scenarios

- Argonne’s Mira BlueGene/Q : 16,384 Nodes

- Covariance Reconstruction From Numerical Weather
Prediction Ensembles using RBLW Estimators
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Nonconvex PIPS

- Nonconvex Interior-Point Algorithm : Advances in Theory (Office of Science Funding)
- Exploits Heterogeneous Structures : Stochastic, PDEs, Networks, Multi-Stage. ..
- Enables Distributed Model Construction : Privacy Concerns

- Applications: Gas-Electric, Security-Constrained & Multi-Period ACOPF, Predictive Control for AGC...
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Gas-Electric Co-Dispatch

Compressor Boost Demand (Power Plant)

Glil:ess;llll)l!)ely A9€2 pey(Le,) = O, d Illinois Power & Gas Transmission Systems
O, ! Demand Pressure 43
nq —>

A 0y 42
Ons
S Suction Pressure D¢, (0) = 0, + Aby, 41
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Flow Z
)
S 40
0 R A D
P R HE —
= o i T 39
= L Pn
< ol oo
E UL P
2 ol oo
= P Pl 38
dmd bbbl >
>
0< > T < >T 37
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Emerging Structures: Stochastic-PDE-Network

Transport Equations for link /€ £L:=L,U L,

Ope 1 peOfe

e | - PeOle _
ot " Ay py 0n Ab,
iafﬂ 4 8p£ 8¢ fé‘fﬂ‘ —0 Hsnd(é) En E)Ut erec(é)
A, Ot ox — m2D} pg O > —0
fﬂ’x:@ = Zn fg‘w:O fﬁ‘x:Le
fe‘x:Le = fo W‘x:o pe‘”’“:L@

pe’m:Lg - 07“60(6)
p6|x:0 = 93nd(€)7 le /:'p
pe’m:O - esnd(ﬁ) + A@g, teLl,

Conservation at node n € \/

Z eout + Z 55 — Z fzn . Z dj —0 féaut zn

Lrec(f)=n i:sup(i)=n L:snd(£)=n j:dem(j)=n

Compression Power for link ¢ € L4 d;

—1
. Ounaey + A0\ 7
P, = gncpT ( d(?) E) 1
esnd(f)




Stochastic Gas Line-Pack Dispatch

Low Demand
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Finding: Line-Pack Withstands Abrupt Changes of Power Plant Demand (30% in an Hour)



Deterministic Gas Line-Pack Dispatch
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Integrated Gas+Electric Dispatch
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Finding: Sacrificing 0.2% of Electric Dispatch Cost Results in 50% Savings in Gas Compression Power
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Scalability Nonconvex PIPS : Gas Dispatch

Exploiting Stochastic Structure

No.Sce n Ob] Iters Time(hh:mm:ss) MPI Proc.
96 1,930,752 1.39x10% 42 01:13:16 8
96 1,930,752 1.39x10% 42 00:38:18 16
96 1,930,752 1.39x10% 42 00:24:55 24
96 1,930,752 1.39x10% 42 00:19:23 32
96 1,930,752 1.39x10% 42 00:12:42 48
96 1,930,752 1.39x10% 42 00:06:48 96
Exploiting Stochastic + Reduced-Space Structure
No.Sce n Ob] Iters Time(hh:mm:ss) MPI Proc.
96 1,930,752 1.39x10% 42 00:29:54 8
96 1,930,752 1.39x10% 42 00:14:45 16
96 1,930,752 1.39x10% 42 00:10:00 24
96 1,930,752 1.39x10% 42 00:07:36 32
96 1,930,752 1.39x10% 42 00:05:14 48
96 1,930,752 1.39x10% 42 00:02:54 96

Argonne’s Fusion Cluster

320 Nodes
12.5 TB Memory
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Concluding Remarks

e Collaborators:

— University of Chicago, Virginia Tech, Universita della Svizzera ltaliana
(Switzerland)

— Levitan & Associates

* On-Going Work:
— Stochastic Global MINLP Framework
— Gas+Electricity Markets
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