

Advanced Grid Modeling 2014 Peer Review

High-Performance Hybrid Simulation/Measurement-Based Tools For Proactive Operator Decision-Support

eMĬT

Dr. Alberto Del Rosso, EPRI

June 17, 2014

Roadmap Starts with a Vision

Power System that is Highly Flexible, Resilient, Highly Interconnected and Optimizes Energy Resources

Better software tools to support transmission operators' situational awareness and decision making are needed

Wide-area situational awareness

Measurements give us current system states:

For true situation awareness we need to know;

- Where the edge is
- How close to the edge we can safely (reliably) operate
- Where would the states be during & after the next contingency

Decision support tool should provide:

- A succinct view of the current status of the power system
- "look-ahead" capability based on "what-if" scenarios

Courtesy of Mahendra Patel

Project Objective and Outcome

- Develop a set of new algorithms and computational approaches for improving situational awareness and support operator decision making by means of:
 - real-time assessment of system dynamic performance
 - operational security risk
- Outcomes:
 - Computational approach for ultra-fast power-system dynamic simulation
 - Mathematical algorithms for synchrophasor-based and hybrid DSA
 - Specification for advanced visualization software

Outcomes are expected to set a foundation for a new generation of real-time Dynamic Security Assessment tools

Technical Approach

Project Team and Participants

Utility/ISO Participants

Southern Company
American Electric Power (AEP)
PJM Interconnection
Tennessee Valley Authority (TVA)

EPRI: Electric Power Research Institute

LLNL: Lawrence Livermore National

Laboratory

UTK: University of Tennessee Knoxville

Areas of Development

High performance dynamic simulation software

Measurement based Voltage and Angular Stability Analysis

Measurement
Based
Dynamic
Response
Prediction

Hysids Approach Intelligence

Advanca Visus ization

High Performance Dynamic Simulation Software

Parallel Contingency Analysis

	Total Runtime (s)			
Number of Cores	Average	Min	Max	StdDev
64	1915	1774	2275	184
128	1062	891	1480	211
256	658	469	960	189
512	477	286	869	187
1024	384	183	610	129
2048	324	193	490	96
4096	200	123	417	105

Would take ~20.4 hours on sequential machine

Reducing I/O Bottleneck

- I/O reduction by keeping only results of interest
- Experiments with different % of output results
- Would need to output <30% for this strategy to have a significant impact on performance

Variable Time Step Integrator

- Applied Adams-Bashforth-Moulton predictorcorrector control for differential variables
- Step sizes chosen to minimize truncation error for differential variables

Speedup 59% for 10s simulation on the 25,000 bus test case

Step Size Scheme	Time (s)
Fixed Step	21.0
Variable Step	8.8

Thread-parallelization of Sparse Linear Solver

Test results on 25,000 bus system

Number of Monitored Buses	Original Solver (sec)	SuperLU_MT with 4 Threads (sec)
200	0.8	9.66
2000	4.32	9.69
20,000	10.23	9.71

- No advantage when limited number of buses is monitored
- Reason: SuperLU_MT does full backward substitution. ETMSP does only partial backward substitution
- Linear solver takes only 10% of overall CPU time

Areas of Development

Figh
performance
dynamic
simulation
software

Measurementbased Voltage and Angular Stability Analysis

Based
Dynamic
Response
Prediction

Hybrid Approxida Intelligense

Ale Valnege VARTE Facilism

Measurement-based Voltage Stability Assessment

Tight coupling between tie lines (small |ZT|)

Comparison

Thevenin approach:

 Inaccurate due to merging all tie lines

New approach:

- accurate total limit
- estimates the limit for each line

Weak coupling between tie lines (large $|Z_T|$)

Demonstration on CURENT NPCC 140-bus Testbed

Time (s)	Tie lines ranked by MBVSA		
Before generator trip	Line 30-31, Line 6-5		
	Line 29-30, Line 8-9, Line 7-6		
	Line 73-35		
After generator trip	Line 29-30, Line 8-9, Line 7-6		
	Line 30-31, Line 6-5		
	Line 73-35		

Measurement-based Angular Stability Assessment

- Using PMU data to identify critical network interfaces or generators vulnerable to angular oscillation and instability
- Estimating stability margin only from PMU data
- Can suggest locations for contingency simulations
- Can also help rank contingencies by simulated trajectories

Approach

Stability margin index based on fluctuation of the oscillation frequency about a dominant mode

$$SMI = \frac{\omega_{\min}}{\omega_{\max}} \times 100\%$$

Test on NPCC 140-bus testbed: Suggesting locations for contingency simulations

- Three events from the 8/14/2003 blackout
- Calculate SMI for NYISO-ISONE and NYISO-PJM interfaces and key generators following each event

 NYISO-ISONE interface and the generators near that interface are more vulnerable.

Areas of Development

righ
performance
dynamic
simulation
Software

Measurement based Voltage and Angular Stability Analysis

Measurement Based Dynamic Response Prediction

Approstal Medigense

Advanced Visualization

Dynamics Prediction using Measurement Based Transfer Functions

• PMU data from ISO New England

• Simulation on 23-bus system

- Multivariate Auto-Regressive Model (ARX)
- Predict system dynamics with:
 - > transfer functions derived from widearea phasor measurement data, and
 - > first few data points of an event
- Overcome the challenges of circuit models
- System reduction to speed up simulation in very large system models

System Reduction Using Transfer Function Model to Speedup Simulation

- Reduce simulation time by simplifying representation of external system:
 - Reduction using transfer function models derived from measurements (Red).
 - Traditional dynamic reduction approach (green)

Areas of Development

Fign
performance
dynamic
simulation
software

Measurement based Voltage and Angular Stability Analysis

Micasurement Basci Dynamis Response Bradiction

Hybrid Approach Intelligence

a varantai mataan Varantai varantai

Hybrid Approach Intelligence

Measurement Based Analysis

- Identifies criticality of the system when simulation results are not available
- Identifies vulnerable regions and critical grid components
- Triggers emergency control actions
- Model reduction

Simulation Based Analysis

- "What-if" analysis. Identifies potential N-1 violations
- Preventive control actions recommendations
- HPC enabled faster than real-time performance

Hybrid Approach Intelligence

- Combines strengths of both approaches
- Analyzes, manages, coordinates, and post-processes results from the different modules to generate actionable information
- Information and visualizations with focus on the operator needs &perspective

Real-time Stability Margins

Real-Time Alerts

Emergency
Automated Actions

Recommendations on Preventive Actions

Areas of Development

FIED
performance
dynamic
simulation
software

Vieasurement based Voltage and Angular Stability Analysis

Measurement
Based
Dynamic
Resoonse
Prediction

Hybrid Approach Intelligence

Advanced Visualization

- Essential to improve situational awareness
- Relevant characteristics:
 - provide concise and actionable information to operators
 - ability to navigate and drill-down for additional information
 - Present cause-effect relationship
- Document visualization concepts and interface requirements
- Test in Alstom's e-terravision platform

Visualization of Voltage Stability Assessment based on e-terravision

Visualization of Angular Stability Analysis based on e-terravision

Concluding Remarks

- Need for tools to improve situational awareness and operator support decision making
- Existing DSA tools:
 - Mainly based on simulations
 - Not capable to fully respond to operators needs
- High-performance computing technology is accessible
- Improved synchrophasor-based algorithms developed
- A sound approach:
 - ⇒ combine measurement-based algorithms with simulation-based tools and advanced visualization

Opportunities for Future Work

- Develop the software platform to integrate the developed tools in a common data and model framework
- Conduct a full pilot demonstration at utility or ISO/RTO
- Develop a roadmap for production-grade deployment in real-time operations.
- Support utilities and ISOs/RTOs in their efforts to implement the roadmap

Project Team

- Alberto Del Rosso, PM (EPRI)
- Evangelos Farantatos (EPRI)
- Navin Bhatt (EPRI)
- Liang Min (LLNL)
- Carol Woodward (LLNL)
- Steve Smith (LLNL)

- Chaoyang Jing (eMIT)
- Kai Sun (UTK)
- Yilu Liu (UTK)
- Jay Giri (Alstom Grid)
- Manu Parashar (Alstom Grid)
- Jiawei Ning (Alstom Grid)

Back-Up Slides (if Necessary)