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Roadmap Starts with a Vision

Power System that is Highly Flexible, Resilient,
Highly Interconnected and Optimizes Energy Resources

-

Better software tools to support transmission operators’ situational
awareness and decision making are needed



Wide-area situational awareness

Measurements give us current system
states:

For true situation awareness we need to

know;

= Where the edge is

= How close to the edge we can safely
(reliably) operate

= Where would the states be during &
after the next contingency

Decision support tool should provide:

e A succinct view of the current status of the
power system

e “look-ahead” capability based on “what-if”
scenarios

Courtesy of Mahendra Patel




Project Objective and Outcome

e Develop a set of new algorithms and computational
approaches for improving situational awareness and support
operator decision making by means of:

= real-time assessment of system dynamic performance

= operational security risk

e (Qutcomes:

=  Computational approach for ultra-fast power-system dynamic
simulation

=  Mathematical algorithms for synchrophasor-based and hybrid DSA
=  Specification for advanced visualization software

Outcomes are expected to set a foundation for a new generation of
real-time Dynamic Security Assessment tools
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Project Team and Participants

Project Management ‘

EPRI

|

Development of High
Performance Dynamic
Simulation Software

Lead: LLNL

!

Development of
Measurement-Based
Tools

Lead: UTK

Integration of
Simulation-Based and
Measurement-Based
Tools
Lead: EPRI

!

Development of
Visualization Interface

Lead: Alstom Grid

Utility/ISO Participants

Southern Company

American Electric Power (AEP)

PJM Interconnection

Tennessee Valley Authority (TVA)

EPRI: Electric Power Research Institute
LLNL: Lawrence Livermore National

Laboratory

UTK: University of Tennessee Knoxville
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High Performance Dynamic Simulation Software

Improvement of EPRI’s Extended Transient Midterm

Simulation Program (ETMSP)

J b
Identified bottlenecks
- -
Parallelization of Speedup of single
contingencies contingency simulation

&

* Reduce time due to Input/Output

* Replace ETMSP’s Linear Solver with
SuperLU_MT
e Use variable time step integration algorithm




Parallel Contingency Analysis
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Reducing 1I/0 Bottleneck

/0 reduction by keeping only results of interest
Experiments with different % of output results

Would need to output <30% for this strategy to have a
significant impact on performance

Total Runtime for Varied Percent of Results Retained
(copied to shared file system)
4096 cores, 4096 contingencies, 6 samples
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Variable Time Step Integrator

e Applied Adams-Bashforth-Moulton predictor-
corrector control for differential variables

e Step sizes chosen to minimize truncation error for
differential variables

Speedup 59% for 10s
simulation on the
25,000 bus test case
Step Size Scheme

Fixed Step 21.0
Variable Step 8.8
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Thread-parallelization of Sparse Linear Solver

e Test results on 25,000 bus system

Number of Monitored | Original Solver | SuperLU_MT with 4 Threads
Buses (sec) (sec)

200 0.8 9.66
2000 4.32 9.69
20,000 10.23 9.71

 No advantage when limited number of buses is monitored

e Reason: SuperLU_MT does full backward substitution. ETMSP
does only partial backward substitution

e Linear solver takes only 10% of overall CPU time
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Measurement-based Voltage Stability Assessment

1. Measure V &\S at all boundary buses

New multi-terminal network equivalent (N+M buses)
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2. Equivalent with details on different transfer paths
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3. Real time estimation for E and Z’s

4. Direct transfer limit calculation
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e accurate total limit
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Demonstration on CURENT NPCC 140-bus Testbed
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Measurement-based Angular Stability
Assessment

Using PMU data to identify critical network
interfaces or generators vulnerable to angular
oscillation and instability

Estimating stability margin only from PMU data

Can suggest locations for contingency
simulations

Can also help rank contingencies by simulated
trajectories



Approach
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Test on NPCC 140-bus testbed:
Suggesting locations for contingency simulations

Three events from the 8/14/2003 blackout

Calculate SMI for NYISO-ISONE and NYISO-PIM
interfaces and key generators following each event

Hydro Quebec
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NYISO-ISONE interface and the

generators near that interface are

more vulnerable.
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Dynamics Prediction using Measurement Based
Transfer Functions
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e Simulation on 23-bus system

Multivariate Auto-Regressive
Model (ARX)

Predict system dynamics with:

» transfer functions derived from wide-
area phasor measurement data, and

» first few data points of an event

Overcome the challenges of
circuit models

System reduction to speed up
simulation in very large system
models
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System Reduction Using Transfer Function Model to

Speedup Simulation

 Reduce simulation time by simplifying representation
of external system:

Reduction using transfer function models derived from
measurements (Red).

Traditional dynamic reduction approach (green)
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Hybrid Approach Intelligence

Measurement Based Analysis

Kldentifies criticality of the system when
simulation results are not available

* |dentifies vulnerable regions and critical
grid components

* Triggers emergency control actions
&Model reduction

~

/

Simulation Based Analysis

(”What-if” analysis. Identifies potential N-l\
violations

e Preventive control actions recommendations
* HPC enabled faster than real-time

performance

N /

1 Hybrid Approach Intelligence 1

‘m = e Combines strengths of both approaches N\

AW ° Analyzes, manages, coordinates, and post-processes results from the different
@ 41 modules to generate actionable information

* Information and visualizations with focus on the operator needs &perspective

| | | | g
Real-time Stability Real-Time Alerts Emergency Recommendations
Margins Automated Actions on Preventive

Actions



Areas of Development
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Advanced Visualization

Essential to improve situational awareness

Relevant characteristics:

e provide concise and actionable information to operators

e ability to navigate and drill-down for additional information
e Present cause-effect relationship

Document visualization concepts and interface
requirements

Test in Alstom’s e-terravision platform



Visualization of Voltage Stability Assessment based on e-terravision
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Visualization of Angular Stability Analysis based on e-terravision
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Concluding Remarks

Need for tools to improve situational awareness and operator
support decision making

Existing DSA tools:

— Mainly based on simulations
— Not capable to fully respond to operators needs

High-performance computing technology is accessible
Improved synchrophasor-based algorithms developed

A sound approach:

—> combine measurement-based algorithms with simulation-based tools
and advanced visualization

28



Opportunities for Future Work

Develop the software platform to integrate the
developed tools in a common data and model
framework

Conduct a full pilot demonstration at utility or
ISO/RTO

Develop a roadmap for production-grade
deployment in real-time operations.

Support utilities and ISOs/ RTOs in their efforts to
implement the roadmap
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Back-Up Slides (if Necessary)
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