Twentieth Annual Report

Radiation Exposures for DOE and DOE Contractor Employees - 1987

October 1989

Prepared for:
U.S. Department of Energy

Assistant Secretary for
Environment, Safety, and Health
Office of Safety Policy and Standards

This report has been reproduced directly from the best available copy.
Available from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

Price: Printed Copy 404
Microfiche A01

Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issues of the following publications, which are generally available in most libraries: Energy Research Abstracts, (ERA); Government Reports Announcements and Index (GRA and I); Scientific and Technical Abstract Reports (STAR); and publication, NTIS-PR-360 available from (NTIS) at the above address.

Twentieth Annual Report

Radiation Exposures for DOE and DOE Contractor Employees - 1987

October 1989

Prepared for U.S. Department of Energy
Assistant Secretary for
Environment, Safety, and Health
Office of Safety Policy and Standards

Under Contract DE-AC06-76RLO 1830

Pacific Northwest Laboratory
Richland, Washington 99352

TWENTIETH ANNUAL REPORT RADIATION EXPOSURES FOR DOE AND DOE CONTRACTOR EMPLOYEES

PREFACE

This report is one of a series of annual reports provided by the U.S. Department of Energy (DOE) summarizing occupational radiation exposures received by DOE and DOE contractor employees. These reports provide an overview of radiation exposures received each year, as well as identification of trends in exposures being experienced over the years.

In 1968, the U.S. Atomic Energy Commission (AEC) established a program for reporting certain occupational radiation exposure information to a central radiation records repository. At the same time, a contract was established with Union Carbide Corporation at Oak Ridge, Tennessee, to computerize the processing of the radiation exposure reporting system. Annual summary reports were published from 1969 through 1973 (WASH-1350-R1 through WASH-1350-R6), which included information on AEC contractor employees and visitors, as well as employees and visitors of companies in the private sector licensed by the AEC.

In January 1975, with the separation of the AEC into the Energy Research and Development Administration (ERDA) and the U.S. Nuclear Regulatory Commission (NRC), each agency assumed responsibility for collecting and maintaining occupational radiation exposure information reported by the facilities under its jurisdiction. Former AEC licensees reported to the NRC while contractors reported to ERDA. At the same time, a contract was established with Union Carbide Corporation at Oak Ridge, Tennessee, to computerize the reporting and processing of both the ERDA and NRC radiation exposure reporting systems. On October 1, 1977, DOE was formed and assumed the responsibilities of ERDA. Processing and programming of exposure information continued at Oak Ridge until October 1978, when the management and further development of the DOE radiation exposure reporting system was assigned to the System Safety Development Center, EG\&G Idaho, Inc.; the NRC system remained at Oak Ridge.

Radiation exposure data for ERDA and ERDA contractor employees and visitors for 1974 through 1976 were reported in ERDA 76/119, ERDA 77-29, and DOE/EV-0011/9. The DOE and DOE contractor radiation exposure data for 1977-1979 were presented in DOE/EV-0066/10, 11, and 12, respectively. A revised version of the 1979 report was issued as DOE/EP-0039. The data for 1980-1982 were presented in DOE/EP-0040, DOE/EP-0040/1, and DOE/EP-0040/2. The data for 1983-1986 were presented in DOE/PE-0072, DOE/EH-0011, DOE/EH-0036, and DOE/EH-0069, respectively. This report contains 1987 radiation exposure data for DOE and DOE contractor employees and visitors.

Previous reports for AEC/ERDA/DOE government and contractor employees and visitors may be obtained from the DOE Technical Information Center, P.O. Box 62, Oak Ridge, TN 37830.

SUMMARY

All U.S. Department of Energy (DOE) and DOE contractors are required by Order DOE 5484.1, Chg 3, Chapter IV, to submit occupational radiation exposure records to a central repository. Data are required to be submitted for all employees who were required to be monitored in accordance with Order DOE 5480.1A, Chapter XI, and for all visitors who had a positive exposure. The data required include the external penetrating whole-body dose equivalent, the shallow dose equivalent, and a summary of internal depositions of radioactive material above specified limits. This report is a summary of the external penetrating whole-body dose equivalents and the internal depositions of radioactive material reported by DOE and DOE contractors for the year 1987.

A total of 81,028 DOE and DOE contractor employees were reported to have been monitored for whole-body ionizing radiation exposures in 1987. This represents 48.7% of all DOE and DOE contractor employees and is a substantial decrease $(13,012)$ from the number of monitored employees reported for 1986. Much of this decrease is attributable to revised reporting requirements that took effect in 1987 and affected the reporting of the 1987 exposure data. In addition to the employees, 62,549 visitors were monitored.

Of all monitored employees reported, 57.4% received a dose equivalent that was less than measurable, 40.7% a measurable dose equivalent less than 1 rem, and 1.9% a dose equivalent greater than 1 rem. No employee received a dose equivalent greater than 4 rem. The dose equivalent received by 91.3% of the visitors to DOE facilities was less than measurable. Only 8.6% of the visitors received a measurable dose equivalent less than 1 rem, and 0.08% of the visitors received a dose equivalent greater than 1 rem. No visitor received a dose equivalent greater than 3 rem.

The collective dose equivalent for DOE and DOE contractor employees was 5,980 person-rem. The collective dose equivalent for visitors was 373 person-rem. The total dose equivalent for employees and visitors combined was 6,353 person-rem. The average dose equivalent for all monitored individuals (employees and visitors) reported was 44 mrem , and the average dose equivalent for all individuals reported who received a measurable exposure was 159 mrem . The highest average dose equivalent for all monitored individuals reported was observed at reactor facilities (167 mrem), and the lowest was observed for visitors (6 mrem) to DOE facilities. These averages are significantly less than the DOE 5-rem/year radiation protection standard for whole-body exposures.

Two cases of internal body depositions were reported in 1987 that exceeded 50% of the pertinent annual dose-equivalent standard as set forth in Order DOE 5480.1A, Chapter XI. Both occurred during 1987 and are considered new cases.

CONTENTS

PREFACE iii
SUMMARY v
INTRODUCTION 1
SUMMARY OF WHOLE-BODY IONIZING RADIATION DOSES 2
DISTRIBUTION BY DOSE INTERVAL 3
DISTRIBUTION BY FACILITY TYPE 10
DISTRIBUTION BY FIELD ORGANIZATION 13
SUMMARY OF INTERNAL EXPOSURES 16
APPENDIX A-DISTRIBUTION OF ANNUAL WHOLE-BODY DOSES BY FACILITY TYPE FOR EACH DOE FIELD ORGANIZATION, 1987 A. 1
APPENDIX B-DISTRIBUTION OF ANNUAL WHOLE-BODY DOSES TO PERSONNEL FOR EACH DOE FIELD ORGANIZATION, 1987 B. 1
APPENDIX C-DISTRIBUTION OF ANNUAL WHOLE-BODY DOSES FOR DOE GOVERNMENT EMPLOYEES AND VISITORS BY DOE FIELD ORGANIZATION, 1987 C. 1

FIGURES

1 Comparison of Number of Employees, Number of Employees Monitored, and Number of Employees Monitored Who Received No Measurable Dose Equivalent, 1980-1987 5
2 Percentage of Monitored Employees and Percentage of Monitored Visitors Who Received Dose Equivalents Less Than Measurable, Measurable to 1 rem, or Greater Than 1 rem, 1987 6
3 Contribution of Each Dose-Equivalent Interval to the Total Collective Dose Equivalent, 1987 7
4 Total Collective Dose Equivalent for all DOE/DOE Contractor Employees Who Received a Dose Equivalent Greater Than 1 rem, 1965-1987 9
5 Contribution of Each Facility Type to the Total Collective Dose Equivalent, 1987 10
TABLES
1 Radiation Protection Standards for External and Internal Dose Equivalents for Individuals in Controlled Areas 1
2 Distribution of Whole-Body Ionizing Radiation Doses for DOE/ DOE Contractor Employees and Visitors by Dose-Equivalent Interval, 1987 4
3 Distribution of Whole-Body Ionizing Radiation Doses for DOE/ DOE Contractor Employees, 1965-1987 8
4 Distribution of Annual Whole-Body Doses for DOE/DOE Contractor Employees and Visitors by Facility Type, 1987 11
5 Collective Dose Equivalents for DOE/DOE Contractor Employees and Visitors by Facility Type, 1987 12
6 Collective Dose Equivalents for DOE/DOE Contractor Employees and Visitors by Field Organization, 1987 13
7 Percent of Collective Dose Equivalent for DOE/DOE Contractor Employees and Visitors Attributed to a Facility Type Within Each Field Organization, 1987 14
8 Collective Dose Equivalents for DOE/DOE Contractor Employees and Visitors by Field Organization, 1980-1987 15
9 Dose Distributions for Cases of Internal Body Depositions, 1980-1987 16
A. 1 Distribution of Annual Whole-Body Doses by Facility Type Albuquerque Field Organization, 1987 A. 1
A. 2 Distribution of Annual Whole-Body Doses by Facility Type Chicago Field Organization, 1987 A. 2
A. 3 Distribution of Annual Whole-Body Doses by Facility Type Idaho Field Organization, 1987 A. 3
A. 4 Distribution of Annual Whole-Body Doses by Facility Type Nevada Field Organization, 1987 A. 4
A. 5 Distribution of Annual Whole-Body Doses by Facility Type Oak Ridge Field Organization, 1987 A. 5
A. 6 Distribution of Annual Whole-Body Doses by Facility Type Pittsburgh Naval Reactor Field Organization, 1987 A. 6
A. 7 Distribution of Annual Whole-Body Doses by Facility Type Richland Field Organization, 1987 A. 7
A. 8 Distribution of Annual Whole-Body Doses by Facility Type San Francisco Field Organization, 1987 A. 8
A. 9 Distribution of Annual Whole-Body Doses by Facility Type Savannah River Field Organization, 1987 A. 9
A. 10 Distribution of Annual Whole-Body Doses by Facility Type Schenectady Naval Reactor Field Organization, 1987 A. 10
B. 1 Distribution of Annual Whole-Body Doses to Personnel Albuquerque Field Organization, 1987 B. 1
B. 2 Distribution of Annual Whole-Body Doses to Personnel Chicago Field Organization, 1987 B. 3
B. 3 Distribution of Annual Whole-Body Doses to Personnel Idaho Field Organization, 1987 B. 5
B. 4 Distribution of Annual Whole-Body Doses to Personnel Nevada Field Organization, 1987 B. 7
B. 5 Distribution of Annual Whole-Body Doses to Personnel Oak Ridge Field Organization, 1987 B. 8
B. 6 Distribution of Annual Whole-Body Doses to Personnel Pittsburgh Naval Reactor Field Organization, 1987 B. 10
B. 7 Distribution of Annual Whole-Body Doses to Personnel Richland Field Organization, 1987 B. 11
B. 8 Distribution of Annual Whole-Body Doses to Personnel
San Francisco Field Organization, 1987 B. 12
B. 9 Distribution of Annual Whole-Body Doses to Personnel Savannah River Field Organization, 1987 B. 14
B. 10 Distribution of Annual Whole-Body Doses to Personnel
Schenectady Naval Reactor Field Organization, 1987 B. 16
C. 1 Distribution of Annual Whole-Body Doses for DOE Government Employees and Visitors by DOE Field Organization, 1987 C. 1

TWENTIETH ANNUAL REPORT

RADIATION EXPOSURES FOR DOE AND DOE CONTRACTOR EMPLOYEES

1987

INTRODUCTION

One of the basic Department of Energy (DOE) radiation protection policy objectives is that radiation exposures be maintained as low as is reasonably achievable (ALARA) within the occupational exposure guidelines provided in Order DOE 5480.1A, Chapter XI (Table 1). Assurance that occupational exposures do not exceed the guidelines is not considered, in itself, sufficient for demonstrating achievement of this objective. All operations are to be conducted in a manner to assure that radiation exposures to employees and visitors are maintained at the lowest levels technically and economically practicable.

TABLE 1. Radiation Protection Standards for External and Internal Dose Equivalents for Individuals in Controlled Areas ${ }^{(\mathrm{a})}$

Type of Exposure	Exposure Period	Dose Equivalent (Dose or Dose Commitment)(rem) ${ }^{\text {(b) }}$
Whole body, head and trunk, gonads, lens of the eye, ${ }^{\text {(d) }}$ red bone marrow, active blood-forming organs	Year Calendar quarter	$\begin{aligned} & 5^{(c)} \\ & 3 \end{aligned}$
Unlimited areas of the skin (except hands and forearms), other organs, tissues, and organ systems (except bone)	Year Calendar quarter	$\begin{array}{r} 15 \\ 5 \end{array}$
Bone	Year Calendar quarter	$\begin{aligned} & 30 \\ & 10 \end{aligned}$
Forearms ${ }^{(\mathrm{e})}$	Year Calendar quarter	$\begin{aligned} & 30 \\ & 10 \end{aligned}$
Hands ${ }^{(\mathrm{e})}$ and feet	Year Calendar quarter	$\begin{aligned} & 75 \\ & 25 \end{aligned}$

(a) As of January 1, 1989, Order DOE 5480.1A, Chapter XI, was superseded by Order DOE 5480.11. However, because this report addresses 1987 exposure data, the requirements of the former Order are presented.
(b) To meet the dose commitment standards above, operations must be conducted in such a manner that it would be unlikely that an individual would assimilate in a critical organ, by inhalation, ingestion, or absorption, a quantity of radionuclide(s) that would commit the individual to an organ dose that exceeds the standards specified in this table.
(c) In special cases, with the approval of the Deputy Assistant Secretary for Safety, Health, and Quality Assurance, a worker may exceed 5 rem/year provided his/her average exposure per year since age 18 will not exceed $5 \mathrm{rem} /$ year. This does not apply to emergency situations.
(d) A beta exposure below a maximum energy of 700 keV will not penetrate the lens of the eye; therefore, the applicable standard for these energies would be that for the skin ($15 \mathrm{rem} / \mathrm{year}$).
(e) All reasonable effort shall be made to limit exposure of forearms and hands to the standard for the skin.

To assist in the determination that doses to individuals are maintained at the lowest level reasonably achievable, DOE requires the submittal of occupational radiation exposure records to a central repository. The central data base also includes occupational radiation exposure information for the former Atomic Energy Commission (AEC) and former Energy Research and Development Administration (ERDA).

This report includes a summary of the data submitted for 1987 by DOE and DOE contractor facilities. Data from previous years are also included so that trends can be analyzed. Appendixes A, B, and C present whole-body exposure data for employees and visitors in 1987.

SUMMARY OF WHOLE-BODY IONIZING RADIATION DOSES

Monitoring is required by Order DOE 5480.1A, Chapter XI, where the potential exists for an individual to receive a dose or dose commitment in excess of 10% of the quarterly or annual occupational radiation exposure standards shown in Table 1. (As of January 1, 1989, Order DOE 5480.1A, Chapter XI, was superseded by Order DOE 5480.11. However, because this report addresses 1987 exposure data, the requirements of the former Order are presented.) Depending on the administrative policy of the contractor, monitoring may also be provided to individuals, such as clerical workers, for whom the exposure potential is extremely low.

On November 6, 1987, DOE promulgated revised reporting requirements in Order DOE 5484.1, Chg 3, which affected the reporting of occupational doses received during 1987. Before 1987, DOE contractors were required to report the number of individuals who received an occupational whole-body exposure in one of 16 dose-equivalent intervals ranging from "less than measurable" to "greater than 10 rem. " Contractors were also required to report separately any uptake of radioactive material that resulted in a dose commitment to the critical organ in excess of 50% of the pertinent annual dose equivalent standards set forth in Order DOE 5480.1A, Chapter XI.

Currently, however, contractors are required by the revised reporting requirements to submit exposure data for individual employees and visitors. Data required to be submitted include total effective dose equivalent, external penetrating whole-body dose equivalent, internal effective dose equivalent, shallow dose equivalent and extremity dose equivalent. However, because the revised Order specifying radiation protection requirements for workers (DOE 5480.11) did not become effective until January 1, 1989, reporting of total effective dose equivalents, internal effective dose equivalents and extremity dose equivalents were not required for 1987 and 1988 exposure data. Consequently, this report is a summary of external penetrating dose equivalents received by DOE and DOE contractor employees and visitors in 1987. This report also summarizes uptakes of radioactive material that were required to be reported as described in the preceding paragraph. These reporting requirements for uptakes of radioactive material will remain in effect for the 1988 exposure data but will be superseded by the new reporting requirements that will become effective beginning with the 1989 exposure data.

One benefit of the revised reporting requirements is that calculation of collective dose equivalents received by DOE and DOE contractor employees and visitors will be more accurate than in the past. In previous reports, collective dose equivalents were calculated by multiplying the number of individuals who received dose equivalents in various dose equivalent ranges by the midpoint of those ranges and summing the products. For this report, however, this calculational method was not necessary because the actual doses received by individuals were reported by the contractors. This allowed the actual collective dose equivalents received by individuals to be determined. Analysis of the 1987 data indicated that using the midpoints of the dose equivalent ranges rather than the actual dose equivalents reported would have resulted in an overestimate of the collective dose equivalent received by all DOE and DOE contractor employees and visitors by 15.5%. Therefore, it is likely that the collective dose equivalents reported for previous years were overestimated by between 10% and 20%.

Another important change resulting from the revised reporting requirements is that the specific employees required to be reported has changed. Although both the former and current reporting requirements state that annual reports shall be submitted for all monitored DOE and DOE contractor workers, the current requirements define the term "monitored worker" whereas the former requirements did not. Monitored workers are defined by the current requirements as those employees who work with or near ionizing radiation or radioactive material and who are monitored in accordance with Order DOE 5480.1A. Therefore, the term "monitored worker" is generally considered to be synonymous with the term "radiation worker." As a result, some contractors chose not to report data for individuals who were not required to be monitored, especially those who received no measurable dose. This probably accounts for the significant decrease in the number of monitored employees reported for 1987 compared to previous years.

DISTRIBUTION BY DOSE INTERVAL

The number of employees and visitors who received a dose equivalent in each of 16 dose-equivalent ranges is presented in Table 2. No DOE or DOE contractor employee received a dose equivalent greater than the DOE radiation protection standard of 5 rem. A total of 81,028 DOE and DOE contractor employees were reported to have been monitored for whole-body ionizing radiation exposure in 1987. This represents 48.7% of all DOE and DOE contractor employees. In addition to the employees, 62,549 visitors were monitored at DOE facilities. Visitors may include radiation workers from another DOE facility present on a temporary basis.

For comparison, Table 2 lists both the actual collective dose equivalents reported for each doseequivalent interval and the collective dose equivalents that would have been calculated had the midpoints of the dose equivalent ranges been multiplied by the number of persons in those ranges. The latter calculational method was used in previous reports because individual exposure data were not submitted to the central repository. The data indicate that almost 70% of the overestimate of the total collective dose equivalent using this method is attributable to the "Measurable to 0.1 rem" dose equivalent interval.

TABLE 2. Distribution of Whole-Body lonizing Radiation Doses for DOE/DOE Contractor Employees and Visitors by Dose-Equivalent Interval, 1987

Dose-Equivalent Interval (rem)	Number of Persons			Collective Person-rem		
	Employees	Visitors	Total	Employees	Visitors	Total
<Measurable	46,512	57,116	103,628	0	0	0
Measurable to 0.10	24,163	4,697	28,860	665	99	$764(1,443)^{(a)}$
0.10 to 0.25	4,799	437	5,236	762	65	827 (916)
0.25 to 0.50	2,376	121	2,497	846	45	891 (936)
0.50 to 0.75	988	79	1,067	605	47	652 (667)
0.75 to 1.00	613	46	659	532	40	573 (577)
1 to 2	1,258	52	1,310	1,776	72	1,849 (1,965)
2 to 3	283	1	284	672	3	675 (710)
3 to 4	36	0	36	122	0	122 (126)
4 to 5	0	0	0	0	0	0
5 to 6	0	0	0	0	0	0
6 to 7	0	0	0	0	0	0
7 to 8	0	0	0	0	0	0
8 to 9	0	0	0	0	0	0
9 to 10	0	0	0	0	0	0
>10	0	0	0	0	0	0
TOTAL	81,028	62,549	143,577	5,980	373	6,353 (7,340)

(a) Numbers in parentheses indicate the collective dose equivalents that would have been calculated by multiplying the midpoints of the dose-equivalent ranges by the numbers of persons in those ranges.

A comparison of the number of DOE and DOE contractor employees, the number of monitored employees reported and the number of monitored employees reported who did not receive a measurable dose equivalent in the last eight years is presented in Figure 1. The number of monitored employees reported for 1987 decreased significantly from the number reported for previous years (Figure 1). ${ }^{\text {(a) }}$

Of the monitored employees reported for 1987, 57.4% received a dose equivalent that was less than measurable, 40.7% a measurable dose equivalent less than 1 rem , and 1.9% a dose equivalent greater than 1 rem (Figure 2). The dose equivalent received by 91.3% of the visitors to DOE facilities was less than measurable. Only 8.6% of the visitors received a dose equivalent between measurable and 1 rem, and 0.08% of the visitors received a dose equivalent greater than 1 rem (Figure 2).

[^0]

FIGURE 2. Percentage of Monitored Employees and Percentage of Monitored Visitors Who Received Dose Equivalents Less Than Measurable, Measurable to 1 rem, or Greater Than 1 rem, 1987

The collective whole-body dose equivalent was 5,980 person-rem for all DOE and DOE contractor employees, and 373 person-rem for visitors to DOE facilities, for a total collective dose equivalent of 6,353 person-rem. The contribution of the individuals in each dose-equivalent interval to the collective dose equivalent is shown in Figure 3. Individuals whose exposure was less than 1 rem contributed the greatest portion (58.4\%) of the total person-rem.

The distribution of whole-body doses for the years 1965-1987 is presented in Table 3. As indicated in Table 3, the fraction of all monitored workers who received a dose equivalent greater than 1 rem has gradually declined since 1965, starting at about 5% and leveling off at about 2% for the last ten years. This general downward trend in occupational radiation exposures can be observed in Figure 4, which shows the collective dose equivalent for all individuals from 1965 to 1987 who received a dose equivalent greater than 1 rem. The collective dose equivalent for individuals who received an exposure less than 1 rem was not included because before 1974, less-than-measurable exposures were not distinguished from measurable exposures in the reporting system. This decrease in collective dose equivalent has been achieved even though some work was performed in older facilities which were not constructed using current design criteria. This trend reflects both changes in the nature of the work performed at DOE facilities and the required application of ALARA practices throughout all DOE operations.

FIGURE 3. Contribution of Each Dose-Equivalent Interval to the Total Collective Dose Equivalent, 1987
TABLE 3. Distribution of Whole-Body lonizing Radiation Doses for DOE/DOE Contractor Employees, 1965-1987

FIGURE 4. Total Collective Dose Equivalent for all DOE/DOE Contractor Employees Who Received a Dose Equivalent Greater Than 1 rem, 1965-1987

DISTRIBUTION BY FACILITY TYPE

The number of individuals and the distribution of the annual whole-body dose equivalents in each of 11 facility categories were reported to the central repository. The assignment of exposures to one of the 11 facility types (listed in Order DOE 5484.1, Chg 3) is a policy decision of each field organization. For this report, visitors and DOE offices were also considered a facility type. The contribution of each facility type to the collective dose equivalent is shown in Figure 5. The largest percentage of the total collective dose equivalent was in the category "Maintenance and Support." The smallest contribution was from DOE offices. A summary of the data is presented in Table 4.

The average dose equivalent by facility type per individual monitored and per individual monitored with a measurable dose equivalent is shown in Table 5. The average dose equivalent per individual monitored for all facilities combined was 44 mrem . The highest average dose equivalent per individual monitored was observed at reactor facilities (167 mrem), and the lowest was observed for visitors to DOE facilities (6 mrem). The average dose equivalent per individual monitored with a measurable dose equivalent was 159 mrem . The highest average dose equivalent for individuals monitored with a measurable dose equivalent was observed at fuel processing facilities (267 mrem), and the lowest was observed at DOE offices (30 mrem).

FIGURE 5. Contribution of Each Facility Type to the Total Collective Dose Equivalent, 1987

${ }_{\text {Ste }}^{\text {Salily }}$	chatious	Mhas ene	Somemememememi		
Acterear	${ }_{3}^{3868}$	${ }^{1,127}$	${ }^{19}$	${ }_{6}^{16}$	$\stackrel{\square}{8}$
	3,				\%
	${ }^{2785}$	${ }^{1,29}$	${ }^{21}$	"	${ }^{5} 5$
	${ }^{3,488}$	1,58	${ }^{26}$	${ }^{38}$	${ }^{20}$
cen	${ }^{13,34}$	8.18	${ }^{1380}$	${ }^{4}$	${ }^{18}$
Recter			$\underset{\substack{1,07 \\ 720}}{10}$	${ }^{19}$	$\underbrace{}_{\substack{29 \\ 40}}$
Remers	${ }_{136}$	${ }^{18}$,	6	3
	${ }_{3,284}$	2006	${ }_{48}$	${ }^{19}$	${ }^{21}$
	10,51	56.4	1008	"	${ }^{18}$
	$\underbrace{}_{\substack{\text { c, } \\ \text { 6, } 29 \\ 0.59}}$		${ }_{\substack{23 \\ y 3}}$	${ }_{5}^{35}$	${ }^{*}$
dototites	${ }^{1295}$	${ }^{2}$	\%	$\stackrel{6}{6}$	-
torat	17357	3,999	${ }_{6,38}$	4	${ }_{\text {s9 }}$

(a) Throughout this report there may be minor variations in collective dose-equivalent values because of rounding.

DISTRIBUTION BY FIELD ORGANIZATION

For each field organization, the number of monitored individuals reported, the number of individuals having a measurable dose and the collective dose equivalent are shown in Table 6. Differences in the collective dose equivalent at each field organization reflect differences in the nature of the work performed and the administrative policy concerning whether the dose distribution is reported for all monitored employees or only for those for whom monitoring is required. Table 7 provides an indication of the work performed at each field organization by showing the fraction of the collective dose equivalent at each field organization attributed to each facility type.

Table 8 presents collective dose equivalents for each field organization from 1980 to 1987. As indicated by the 1987 data, the practice of using the midpoints of dose-equivalent ranges to calculate collective dose equivalent overestimates the actual collective dose equivalent. This practice was necessary for pre-1987 data because of the lack of a requirement to report individual exposure data. For 1987, this practice would have resulted in overestimates in collective dose equivalents ranging from 7% (Richland) to 68% (Pittsburgh). The collective dose equivalent for all DOE and DOE contractor employees and visitors would have been overestimated by 15.5%. Therefore, it is likely that the collective dose equivalents reported for the years 1980 to 1986 were overestimated by between 10% and 20%. Applying a value of 15.5% for the 1986 data, the actual collective dose equivalent would have been 7,327 rem. Comparing this value to the actual collective dose equivalent for 1987 (6,353 rem), the total collective dose equivalent for DOE and DOE contractor employees and visitors decreased by over 13% from 1986 to 1987.

TABLE 6. Collective Dose Equivalents for DOE/DOE Contractor Employees and Visitors by Field Organization, 1987

Field Organization	No. Individuals Monitored	No. Individuals with Measurable Doses	Collective Dose Equivalent (Person-rem)	Average Dose Equivalent (mrem) Per Individual Monitored	Average Dose Equivalent (mrem) Per Individual Monitored with a Measurable Dose
Albuquerque	21,601	8,647	1,363	63	158
Chicago	14,002	3,889	348	25	90
Idaho	7,317	1,972	318	43	161
Nevada	7,579	98	8	1	80
Oak Ridge	15,997	4,185	517	32	123
Pittsburgh Naval Reactor	2,203	1,726	78	36	45
Richland	23,734	6,843	2,477	104	362
San Francisco	29,630	1,078	78	3	73
Savannah River	18,454	9,245	945	51	102
Schenectady Naval Reactor	3,060	2,266	220	72	97
TOTAL	143,577	39,949	6,353	44	159

TABLE 7. Percent of Collective Dose Equivalent for DOE/DOE Contractor Employees and Visitors Attributed to a Facility Type Within
Each Field Organization, 1987 Each Field Organization, 1987
Facility Type

$\begin{gathered} \text { Field } \\ \text { Organization } \\ \hline \end{gathered}$	Accel.	Fuel Enrich.	$\begin{aligned} & \text { Fuel } \\ & \text { Fab. } \end{aligned}$	Fuel Proc.	Maint. Support	Reactor	Research, General	Research, Fusion	Waste Proc./Man.	$\begin{gathered} \text { Weapon } \\ \text { F\&T } \end{gathered}$	Other	Visitors	$\begin{aligned} & \text { DOE } \\ & \text { Offices } \end{aligned}$
Albuquerque					1.7		25.9		<0.1	67.0	1.3	3.9	0.2
Chicago	38.8		0.1		8.2	11.2	19.6	1.6	1.2		0.5	18.7	0.2
Idaho				43.4	3.1	24.8	0.7		1.3		25.2	1.3	0.1
Nevada					9.1		0.4		1.3	86.2		3.0	
Oak Ridge		7.7	38.6	1.5			28.3		<0.1	17.9		6.0	
Pittsburgh N.R.						42.6	56.8					0.5	
Richland	< 0.1		0.6	0.6	44.3	31.3	4.2		14.8		3.8	0.4	<0.1
San Francisco	42.5	1.8			16.0		19.6	3.6	< 0.1	5.8	0.5	10.0	0.2
Savannah River			6.0	28.2	38.9	5.3	3.2		11.9	1.2	3.1	2.0	0.3
Schenectady N.R.						14.0	2.8				< 0.1	83.2	

TABLE 8. Collective Dose Equivalent for DOE/DOE Contractor Employees and Visitors by Field Organization,

1980-1987 (person-rem)	
Field Organization	1980
Albuquerque	1,700
Chicago	918
Idaho	593
Nevada	50
Oak Ridge	604
Pittsburgh Naval Reactor	186
Richland	2,256
San Francisco	240
Savannah River	1,391
Schenectady Naval Reactor	79
TOTAL	$[8,024]^{(c)}$

(a) The data differ slightly from those listed in previous reports because of errors reported by individual contractors after publication of the annual report. (b) Numbers in parentheses indicate the collective dose equivalents that would have been calculated by using the midpoints of the dose equivalent ranges to calculate collective dose equivalent as was done for the 1980-1986 data. 1987 was the first year for which actual individual dose equivalents were reported. The data suggest that the actual previous years in this decade.
(c) Total collective dose equivalen

[^1]
SUMMARY OF INTERNAL EXPOSURES

Internal body depositions of radioactive material result from accidental, not planned, exposures. A report of internal body deposition of radioactive materials is required when:

1. any uptake of radioactive material occurred during the reporting year that either independently or when added to a current burden was estimated to result in a dose commitment to the critical organ in excess of 50% of the pertinent annual dose-equivalent standard set forth in Order DOE 5480.1A, Chapter XI; or when
2. any previously unreported uptake of radioactive material was determined to have been reportable according to the above criteria by reason of the most recent dose-equivalent estimates.

Two cases of internal body depositions were reported in 1987 that exceeded 50% of the pertinent annual dose-equivalent standard as set forth in Order DOE 5480.1A, Chapter XI. Both occurred during 1987 and are considered new cases.

Table 9 lists only those cases occurring since 1980 and identifies each by the first year known in which the dose equivalent exceeded 50% of the annual standard. Also listed are the radionuclide(s) involved, the organ showing the highest percent of the annual standard, and the number of individuals in each dose-equivalent range. Revisions to previously reported cases are included.

TABLE 9. Dose Distributions for Cases of Internal Body Depositions, 1980-1987

Year	Radionuclide	Critical Organ	Dose-Equivalent Interval (rem)					
			7.5-10	10-15	15-25	25-50	50-100	100-200
1980	${ }^{238} \mathrm{Pu}$	Bone			2	2		
	${ }^{234} \mathrm{U},{ }^{235} \mathrm{U},{ }^{238} \mathrm{U}$	Lung	1					
1981	${ }^{238} \mathrm{Pu},{ }^{239} \mathrm{Pu},{ }^{240} \mathrm{Pu}$	Bone		1	1			
	${ }^{238} \mathrm{Pu},{ }^{239} \mathrm{Pu},{ }^{240} \mathrm{Pu}$	Lung	1					
	${ }^{234} \mathrm{U},{ }^{235} \mathrm{U},{ }^{238} \mathrm{U}$	Lung	3					
1982	${ }^{238} \mathrm{Pu}$	Bone			3	1		
	${ }^{238} \mathrm{Pu},{ }^{239} \mathrm{Pu},{ }^{240} \mathrm{Pu}$	Bone						1
1983	${ }^{239} \mathrm{Pu},{ }^{240} \mathrm{Pu},{ }^{241} \mathrm{Am}$	Bone			1			
	${ }^{234} \mathrm{U},{ }^{235} \mathrm{U}$	Lung	4					
1984	${ }^{239} \mathrm{Pu},{ }^{241} \mathrm{Am}$	Lung					1	
1985	${ }^{234} \mathrm{U},{ }^{235} \mathrm{U},{ }^{238} \mathrm{U}$	Lung	2					
	${ }^{239} \mathrm{Pu},{ }^{241} \mathrm{Am}$	Lung	1					
1986	None							
1987	${ }^{238 P u}$	Liver	1	1				

APPENDIX A

DISTRIBUTION OF ANNUAL WHOLE-BODY DOSES BY FACILITY TYPE FOR EACH DOE FIELD ORGANIZATION, 1987
TABLE A. 1
DISTRIBUTION OF ANNUAL WHOLE-BODY DOSES BY FACILITY TYPE
ALBUQUERQUE FIELD ORGANIZATION
1987

Dose-Equivalent Ranges (rem)																		
Facility Type	Total Monitored	Meas.	Meas.- ≤ 0.10	$\begin{array}{r} 0.10- \\ 0.25 \\ \hline \end{array}$	$\begin{array}{r} 0.25- \\ 0.50 \\ \hline \end{array}$	$\begin{array}{r} 0.50- \\ 0.75 \\ \hline \end{array}$	$\begin{aligned} & 0.75- \\ & 1.00 \\ & \hline \end{aligned}$	1-2	2-3	3-4	45	5-6	6-7	7-8	8-9	9-10	>10	Total Person-rem
Accelerator																		
Fuel/Uran. Enrich.																		
Fuel Fabrication																		
Fuel Processing																		
Maint. \& Support	1,701	693	990	11	6	1												23
Reactor																		
Research, Gen.	5,880	4,916	505	145	79	49	51	113	21	1								353
Research, Fusion																		
Waste Proc./Mgmt.	15	4	11															1
Weapons Fab. \& Test.	7,591	2,834	3,208	643	366	176	96	246	22									913
Other	1,520	871	629	16	4													18
Visitors	4,335*	3,155*	1,037	112	22	7	2											53
DOE Offices	559	481	72	4	2													3
TOTAL	21,601*	12,954*	6,452	931	479	233	149	359	43	1								
TOTAL PERSON-REM			160	150	169	145	130	508	98	3								1,363

						Dos	e-Equ	alen		S (rem								
Facility Type	Total Monitored	Meas.	Meas.- ≤ 0.10	$\begin{array}{r} 0.10- \\ 0.25 \\ \hline \end{array}$	$\begin{array}{r} 0.25- \\ 0.50 \\ \hline \end{array}$	$\begin{array}{r} 0.50- \\ 0.75 \\ \hline \end{array}$	$\begin{array}{r} 0.75- \\ 1.00 \\ \hline \end{array}$	1-2	2-3	3-4	45	5-6	6-7	7-8	8-9	9-10	>10	Total Person-rem
Accelerator																		
Fuel/Uran. Enrich.																		
Fuel Fabrication																		
Fuel Processing	1,841	1,259	317	105	74	30	24	28	4									138
Maint. \& Support	303	186	93	12	12													10
Reactor	1,590	1,124	279	94	52	16	9	16										79
Research, Gen.	35	26	6	1			1	1										2
Research, Fusion																		
Waste Proc./Mgmt.	94	67	13	6	7	1												4
Weapons Fab. \& Test.																		
Other	1,839	1,161	460	124	63	19	12											80
Visitors	1,524*	1,444*	73	3	2	1	1											4
DOE Offices	91	78	13															
TOTAL	7,317*	5,345*	1,254	345	210	67	47	45	4									
TOTAL PERSON-REM			42	56	72	41	40	58	8									318

distribution of annual whilitib

Dose-Equivalent Ranges (rem)

Facility Type	Total Monitored	Meas.	Meas.- ≤ 0.10	$\begin{array}{r} 0.10- \\ 0.25 \\ \hline \end{array}$	$\begin{array}{r} 0.25- \\ 0.50 \\ \hline \end{array}$	$\begin{array}{r} 0.50- \\ 0.75 \\ \hline \end{array}$	$\begin{aligned} & 0.75- \\ & 1.00 \\ & \hline \end{aligned}$	1-2	2-3	3-4	4.5	5-6	6-7	7-8	8-9	9-10	>10	Total Person-rem
Accelerator																		
Fuel/Uran. Enrich.																		
Fuel Fabrication																		
Fuel Processing																		
Maint. \& Support	14	8	3	2	1													1
Reactor																		
Research, Gen.	1		1															
Research, Fusion																		
Waste Proc./Mgmt.	13	10	3															
Weapons Fab. \& Test.	303	225	60	12	4	2												7
Other	2	2																
Visitors	7,246*	7,236*	10															
DOE Offices																		
TOTAL	7,579*	7,481*	77	14	5	2												
TOTAL PERSON-REM			3	2	2	1												8

* Includes 7,234 visitors reported separately.

Facility Type	Total Monitored	Meas.	$\begin{aligned} & \text { Meas.- } \\ & <0.10 \end{aligned}$	$\begin{array}{r} 0.10- \\ 0.25 \\ \hline \end{array}$	$\begin{array}{r} 0.25- \\ 0.50 \\ \hline \end{array}$	$\begin{array}{r} 0.50- \\ 0.75 \\ \hline \end{array}$	$\begin{aligned} & 0.75- \\ & 1.00 \\ & \hline \end{aligned}$	1-2	2-3	3-4	4.5	5-6	6-7	7-8	8-9	9-10	>10	Total Person-rem
Accelerator																		
Fuel/Uran. Enrich.	2,608	1,502	1,020	68	15	1	1	1										40
Fuel Fabrication	1,745	603	550	282	235	62	10	3										199
Fuel Processing	133	33	76	20	3	1												8
Maint. \& Support																		
Reactor																		
Research, Gen.	5,560	5,031	172	179	91	35	28	24										146
Research, Fusion																		
Waste Proc./Mgmt.	103	98	5															
Weapons Fab. \& Test.	704	138	147	329	81	7	1	1										92
Other																		
Visitors	5,144*	4,407*	670	49	11	4	1	1	1									31
DOE Offices																		
TOTAL	15,997*	11,812*	2,640	927	436	110	41	30	1									
TOTAL PERSON-REM			71	148	157	63	36	39	3									517

* Includes 1,250 visitors reported separately.
TABLE A. 6
DISTRIBUTION OF ANNUAL WHOLE-BODY DOSES BY FACILITY TYPE PITTSBURGH NAVAL REACTOR FIELD ORGANIZATION

TABLE A. 7
DISTRIBUTION OF ANNUAL WHOLE-BODY DOSES BY FACILITY TYPE $\underset{\text { RICHLAND FIED ORGANIZATION }}{1987}$
$965 \quad 561 \quad 119$
б

> TOTAL PERSON-REM
> * Includes 13,120 visitors reported separately.
DISTRIBUTION OF ANNUAL WHOLE-BODY DOSES BY FACILITY TYPE SAN FRANCISCO $\underset{1987}{\text { FIELD ORGANIZATION }}$

							-Equ	le	ang	(re								
Facility Type	Total Monitored	Meas.	Meas.- <0.10	$\begin{aligned} & 0.10- \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.25- \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.50- \\ & 0.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75- \\ & 1.00 \\ & \hline \end{aligned}$	1-2	2-3	3-4	$4-5$	5-6	6-7	7-8	8-9	9-10	>10	Total Person-rem
Accelerator	870	393	400	53	17	2	2	3										33
Fuel/Uran. Enrich.	804	789	11	2	1	1												1
Fuel Fabrication																		
Fuel Processing																		
Maint. \& Support	4,428	4,319	87	12	5		1	4										13
Reactor																		
Research, Gen.	1,970	1,705	230	17	15	2	1											15
Research, Fusion	433	399	24	9		1												3
Waste Proc./Mgmt.	54	53	1															
Weapons Fab. \& Test.	1,614	1,542	59	11	1	1												5
Other	411	401	9	1														
Visitors	18,945*	18,853*	72	13	6	1												8
DOE Offices	101	98	3															
TOTAL	29,630*	28,552*	896	118	45	8	4	7										
TOTAL PERSON-REM			28	18	15	5	4	9										78

TABLE A. 9
dISTRIBUTION OF ANNUAL WHOLE-BODY DOSES BY FACILITY TYPE SAVANNAH RIVER FIELD ORGANIZATION

Dose-Equivalent Ranges (rem)																		
Facility Type	Total Monitored	Meas.	Meas.- ≤ 0.10	$\begin{array}{r} 0.10- \\ 0.25 \\ \hline \end{array}$	$\begin{array}{r} 0.25- \\ 0.50 \\ \hline \end{array}$	$\begin{array}{r} 0.50- \\ 0.75 \\ \hline \end{array}$	$\begin{array}{r} 0.75- \\ 1.00 \\ \hline \end{array}$	1-2	2-3	3-4	4.5	5-6	6-7	7-8	8-9	9-10	>10	Total Person-rem
Accelerator																		
Fuel/Uran. Enrich.																		
Fuel Fabrication	981	403	443	49	57	24	5											57
Fuel Processing	1,088	199	394	183	120	67	56	69										267
Maint. \& Support	7,007	2,892	3,095	654	254	79	19	14										368
Reactor	989	245	577	149	16	1	1											50
Research, Gen.	1,047	636	337	45	20	4	2	3										30
Research, Fusion																		
Waste Proc./Mgmt.	593	195	178	88	51	38	16	27										112
Weapons Fab. \& Test.	349	198	122	19	7	3												11
Other	1,780	831	902	42	5													29
Visitors	4,339*	3,432*	889	13	4	1												19
DOE Offices	281	178	100	3														3
TOTAL	18,454*	9,209*	7,037	1,245	534	217	99	113										
TOTAL PERSON-REM			195	196	191	132	85	146										945

distribution of annual while it iod doses by faclitr trpe

							-q		Ran	(rem								
Facility Type	Total Monitored	Meas.	Meas.- ≤ 0.10	$\begin{aligned} & 0.10- \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.25- \\ 0.50 \\ \hline \end{array}$	$\begin{aligned} & 0.50- \\ & 0.75 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.75- \\ 1.00 \\ \hline \end{array}$	1-2	2-3	3-4	45	5-6	6-7	7-8	8-9	9-10	>10	Total Person-rem
Accelerator	1	1																
Fuel/Uran. Enrich.																		
Fuel Fabrication																		
Fuel Processing																		
Maint. \& Support																		
Reactor	892	55	769	52	15	1												31
Research, Gen.	958	519	434	5														6
Research, Fusion																		
Waste Proc./Mgmt.																		
Weapons Fab. \& Test.																		
Other	29	18	11															
Visitors	1,180	201	670	106	61	59	37	46										183
DOE Offices																		
TOTAL	3,060	794	1,884	163	76	60	37	46										
TOTAL PERSON-REM			33	25	29	36	32	64										220

APPENDIX B

DISTRIBUTION OF ANNUAL WHOLE-BODY DOSES
TO PERSONNEL FOR EACH DOE FIELD ORGANIZATION, 1987
DISTRIBUTION OF ANNUAL WHOLELE-B
dISTRIBUTION OF ANNUAL WHOLE-BODY DOSES TO PERSONNEL 1987
Dose-Equivalent Ranges (rem)

Contractor	$<$ Meas.	Meas.- <0.10	$\begin{array}{r} 0.10- \\ 0.25 \\ \hline \end{array}$	$\begin{aligned} & 0.25- \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.50- \\ & 0.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75- \\ & 1.00 \\ & \hline \end{aligned}$	1-2	2-3	3-4	45	5-6	6-7	7-8	8-9	9-10	≥ 10	Total Person-rem
Mason \& Hanger (Amarillo, TX)																	
Employees	938	95	45	29	8	2	5										35
Visitors	30	14	2														1
Total	968	109	47	29	8	2	5										36
Mason \& Hanger (Los Alamos, NM)																	
Employees	353	14															
Visitors																	
Total	353	14															
Pan-Am World Services, Inc.																	
Employees	117	6	1	4													2
Visitors																	
Total	117	6	1	4													2
Rockwell International																	
Employees	1,679	2,136	589	333	167	94	241	22									858
Visitors	647	384	56	6	1	1											21
Total	2,326	2,520	645	339	168	95	241	22									879
Ross Aviation, Inc.																	
Employees	88	9	1														
Visitors																	
Total	88	9	1														
Sandia National Laboratory																	
Employees	557																
Visitors	11																
Total	568																
TOTALALBUQUERQUE	9,890	6,221	925	476	233	149	359	43	1								1,358

Dose-Equivalent Ranges (rem)

Contractor	$<$ Meas.	Meas.- ≤ 0.10	$\begin{aligned} & 0.10- \\ & 0.25 \\ & \hline \end{aligned}$	0.2 0.5		$\begin{aligned} & 0.50- \\ & 0.75 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.75- \\ 1.00 \\ \hline \end{array}$	1-2	2-3	3-4	45	5-6	$\underline{6-7}$	7-8	8.9	$\underline{9-10}>10$	Total Person-rem
Ames Laboratory-(lowa St.)																	
Employees		69															1
Visitors																	
Total		69															1
Argonne National Lab.																	
Employees	1,884	334	138	50	16		17	3									80
Visitors	1	66	9														3
Total	1,885	400	147	50	16		17	3									84
Battelle Memorial Institute -Columbus																	
Employees	77	20	4	5	2		1	7	1								18
Visitors		10	2														
Total	77	30	6	5	2		1	7	1								19
Brookhaven National Lab.																	
Employees	885	706	112	76	25		19	25	1								133
Visitors	284	588	49	8	4		3	5									37
Total	1,169	1,294	161	84	29		22	30	1								170
Chicago Misc. Subcontractors																	
Employees	18	35	10	3		1		1									6
Visitors																	
Total	18	35	10	3	1	1		1									6
Fermi National Lab.																	
Employees	1,003	594	66	15		4	3										35
Visitors	404	452	67	3			1										24
Total	1,407	1,046	133	18		4	4										58

TABLE B. 2 (Continued)
DISTRIBUTION OF ANNUAL WHOLE-BODY DOSES TO PERSONNEL
CHICAGO FIELD ORGANIZATION
1987
Dose-Equivalent Ranges (rem)

Contractor	Meas.	$\begin{aligned} & \text { Meas.- } \\ & <0.10 \end{aligned}$	$\begin{array}{r} 0.10 \\ 0.25 \\ \hline \end{array}$	$\begin{array}{r} 0.25- \\ 0.50 \\ \hline \end{array}$	$\begin{array}{r} 0.50- \\ 0.75 \\ \hline \end{array}$	$\begin{array}{r} 0.75- \\ 1.00 \\ \hline \end{array}$	1-2	2-3	3-4	$4-5$	5-6	6-7	7-8	8-9	9-10	≥ 10	Total Person-rem
Massachusets Institute of Technology																	
Employees	243	37	8	2	1												4
Visitors		2															
Total	243	39	8	2	1												4
Notre Dame Radiation Lab.																	
Employees	32	3	1														
Visitors	3																
Total	35	3	1														
Princeton Plasma Physics Lab.																	
Employees	728	153	8	1													6
Visitors	177	23	2														1
Total	905	176	10	1													7
Solar Energy Research Inst.																	
Employees	15	2															
Visitors																	
Total	15	2															
TOTAL CHICAGO	5,754	3,094	476	163	53	44	41	2									348

!
$\stackrel{ }{ }$

\circ
σ

∞
$\stackrel{\infty}{\wedge}$
$\widehat{\dagger}$
$\stackrel{\varphi}{6}$

 1987
distribution of annual whole-body doses to personnel IDAHO FIELD ORGANIZATION

Catalytic Inc.
Employees
Visitors
Total
EG\&G Idaho, Inc.
Employees
Visitors
Total
Idaho Office Subcontractors Employees
Visitors Total MK-Ferguson Subcontractors Employees
Vision Protection Technology-INEL Employees
Total Ralph M. Parsons Co. Employees
TABLE B. 3 (Continued)
DISTRIBUTION OF ANNUAL WHOLE-BODY DOSES TO PERSONNEL IDAHO FIELD ORGANIZATION

DISTRIBUTION OF ANNUAL WHOLE-BODY DOSES TO PERSONNEL

 1987Dose-Equivalent Ranges (rem)

Contractor	Meas.	Meas.- ≤ 0.10	$\begin{aligned} & 0.10- \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.25- \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.50- \\ & 0.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75- \\ & 1.00 \\ & \hline \end{aligned}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	≥ 10	Total Person-rem
Computer Sciences Corp.																	
Employees				1													
Visitors		1															
Total		1		1													
EG\&G, Kirtland																	
Employees	56	8															
Visitors																	
Total	56	8															
EG\&G, Los Alamos																	
Employees	22	10	1		1												1
Visitors	2	3															
Total	24	13	1		1												1
Fenix \& Scisson, Inc.																	
Employees	40	17	4	1													2
Visitors		1															
Total	40	18	4	1													2
Holmes \& Narver, Inc.																	
Employees	15	9	5	1													1
Visitors																	
Total	15	9	5	1													1
Reynolds Elec. \& Eng. Co.																	
Employees	82	22	3	2													2
Visitors		1															
Total	82	23	3	2													2
TOTAL NEVADA	217	72	13	5	1												7

DISTRIBUTION OF ANNUAL WHOLE-BODY DOSES TO PERSONNEL OAK RIDGE FIELD ORGANIZATION

Dose-Equivalent Ranges (rem)

Contractor	Meas.	Meas.- <0.10	$\begin{aligned} & 0.10- \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.25- \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.50- \\ & 0.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75- \\ & 1.00 \\ & \hline \end{aligned}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	≥ 10	Total Person-rem
M. M. Portsmouth Subcontractors																	
Employees																	
Visitors	107	246															3
Total	107	246															3
Martin Marietta/ORGDP																	
Employees	368	45	5	1	1		1										5
Visitors																	
Total	368	45	5	1	1		1										5
Martin Marietta/ORNL																	
Employees	5,026	142	178	91	35	28	24										146
Visitors	1,050	25	6	1													2
Total	6,076	167	184	92	35	28	24										148
Martin Marietta/Paducah																	
Employees	18	8	30	9													9
Visitors																	
Total	18	8	30	9													9
Martin Marietta/Portsmouth																	
Employees	1,116	967	33	5		1											27
Visitors																	
Total	1,116	967	33	5		1											27
Martin Marietta/Y-12																	
Employees	138	147	329	81	7	1	1										92
Visitors			17	4	2	1	1	1									11
Total	138	147	346	85	9	2	2	1									103

Dose-Equivalent Ranges (rem)

TABLE B. 6 DISTRIBUTION OF ANNUAL WHOLE-BODY DOSES TO PERSONNEL PITTSBURGH NAVAL REACTOR FIELD ORGANIZATION

Contractor	Meas.	$\begin{aligned} & \text { Meas.- } \\ & \leq 0.10 \end{aligned}$	$\begin{array}{r} 0.10 \\ 0.25 \\ \hline \end{array}$	$\begin{array}{r} 0.25- \\ 0.50 \\ \hline \end{array}$	$\begin{aligned} & 0.50- \\ & 0.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75- \\ & 1.00 \\ & \hline \end{aligned}$	1-2	2-3	3-4	4.5	5-6	6-7	7-8	8-9	9-10	≥ 10	Total Person-rem
Westinghouse Electric/BAPL																	
Employees	213	645	18	21	3	1											20
Visitors	173	60															
Total	386	705	18	21	3	1											21
Westinghouse Electric/NRF																	
Employees	38	758	158	26	7	1											57
Visitors		9	1														
Total	38	767	159	26	7	1											58
Westinghouse Plant Apparatus Div.																	
Employees	43																
Visitors																	
Total	43																
TOTAL PITTSBURGH	467	1,472	177	47	10	2											78

DISTRIBUTION OF ANNUAL WHOLE-BODY DOSES TO PERSONNEL RICHLAND FIELD ORGANIZATION

$$
\stackrel{\varphi}{n} \mid
$$

1987

Dose-Equivalent Ranges (rem)
 Dose-Equivalent Ranges (rem)

$$
4-5
$$

$$
6-7 \quad 7-8
$$

$$
6-7 \quad 7-8 \quad 8-9
$$

$9-10 \geq 10 \quad$| Total |
| :---: |
| Person-rem |

Total
Person-rem

$\stackrel{ }{ }$
$\stackrel{\circ}{\sigma}$

\%
*
8)
\&
12

공형
 Energy Tech. Engineering Center
Employees
Visitors
Total
Employees
Visitors
Total

LLNL Plant Services
 LLNL Plan

 EmployeesVisitors Visitors LLNL Security Employees
Visitors
Total
LLNL Subcontractors
Employees
Visitors
Total Employees
Visitors
Total
LLNL Subcontractors
Employees
Visitors
Total
Lawrence Berkeley Laboratory Lawrence Berkeley Laboratory
Employees
Visitors
Total Lawrence Livermore Nat'I Lab.
-Nevada
Employees
Visitors
Total Lawrence Livermore $\mathrm{Nat}^{\prime} \mathrm{I}$ Lab.
Employees Employees
Visitors
Total
DISTRIBUTION OF ANNUAL WHOLE-BODY DOSES TO PERSONNEL SAN FRANCISCO FIELD ORGANIZATION
Dose-Equivalent Ranges (rem)

A Aे in in

 Total Lawr

TABLE B. 8 (Continued)
DISTRIBUTION OF ANNUAL WHOLE-BODY DOSES TO PERSONNEL
SAN FRANCISCO FIELD ORGANIZATION
1987
Dose-Equivalent Ranges (rem)
$6-7 \quad 7-8 \quad 8-9$
if
45
$3-4$
2.3

> Rockwell International,
Atomics Int'l
Employees
Visitors
Total
Visitors
Total
203

Dose
$9-10 \geq 10$
∞
فे
$\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 2\end{array}$

U. of Cal. SAN - Lab of Radiobiology
Employees ab-LEHR
Employe
U. of Cal./Davis, Radiobiology
Lab - LEHR Employees
Visitors
Visitors
Total Employees
Visitors
Total
TOTAL SAN FRANCISCO

$\stackrel{1}{\wedge}$
\div
∞
$\stackrel{\infty}{\circ}$
$\hat{\oplus}$
5-6
DISTRIBUTION OF ANNUAL WHOLE-BODY DOSES TO PERSONNEL
DISTRIBUTION OF ANNUAL WHOLE-BODY DOSES TO PERSONNEL
SAVANNAH RIVER FIELD ORGANIZATION
1987
Dose-Equivalent Ranges (rem)
4.5
$\begin{array}{lllll}\overline{\sigma-\varepsilon} & \overline{\varepsilon-z} & \overline{z-L} & \overline{00 \cdot L} & \overline{S \angle O} \\ & -S \angle O L & -0 S^{\circ} 0\end{array}$

Contractor
Diversco
Employees
Visitors
Total
E. I. Du Pont/Construction
Employees
Visitors
Total
E. I. Du Pont/Production
Employees
Visitors
Total
E. I. Du Pont/Research
Employees
Visitors
Total
E. I. Du Pont/Subcontractors
Employees
Visitors
Total
Industrial Phases-SR
Employees
Visitors
Total

TABLE B. 9 (Continued)
DISTRIBUTION OF ANNUAL WHOLE-BODY DOSES TO PERSONNEL
SAVANNAH RIVER FIELD ORGANIZATION
1987
 TOTAL SAVANNAH RIVER
DISTRIBUTION OF ANNUAL WHOLE-BODY DOSES TO PERSONNEL
SCHENECTADY NAVAL REACTOR FIELD ORGANIZATION

APPENDIX C

DISTRIBUTION OF ANNUAL WHOLE-BODY DOSES FOR DOE GOVERNMENT EMPLOYEES AND VISITORS BY DOE FIELD ORGANIZATION, 1987

$$
\begin{gathered}
\text { DISTRIBUTION OF ANNUAL WHOLE-BODY DOSES FOR } \\
\text { DOE GOVERNMENT EMPLOYEES AND VISITORS } \\
\text { BY DOE FIELD ORGANIZATION } \\
1987
\end{gathered}
$$

* Includes 51,408 visitors reported separately.

[^0]: (a) Much of this decrease is attributable to the revised reporting requirements as discussed on page 3.

[^1]: suggest that the calculational method used could have overestimated the actual total collective dose equivalents by approximately 15%.

