

Thirteenth Annual Report
 Radiation Exposure
 For DOE and DOE
 Contractor Employees-1980

Published: February 1982
Prepared for:
U.S. Department of Energy

Assistant Secretary for Environmental
Protection, Safety, and Emergency Preparedness
Office of Nuclear Safety
Under Contract No. DE-AC06-76-RL01830

This report has been reproduced directly from the best available copy.
Available from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

Price: Printed Copy a04 Microfiche A01

Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issues of the following publications, which are generally available in most libraries: Energy Research Abstracts, (ERA); Government Reports Announcements and Index (GRA and I); Scientific and Technical Abstract Reports (STAR); and publication, NTIS-PR-360 available from (NTIS) at the above address.

Thirteenth Annual Report Radiation Exposure For DOE and DOE Contractor Employees-1980

Prepared by:
Pacific Northwest Laboratory
Richland, Washington 99352
Under Contract No. DE-AC06-76RLO1 830

Prepared for:
U.S. Department of Energy

Assistant Secretary for Environmental Protection, Safety, and Emergency Preparedness
Office of Nuclear Safety
Washington, DC 20545

THIRTEENTH ANNUAL REPORT RADIATION EXPOSURES FOR DOE AND DOE CONTRACTOR EMPLOYEES 1980

PREFACE

This report is one of a series of annual reports provided by the U.S. Department of Energy (DOE) summarizing occupational radiation exposures received by DOE and DOE contractor employees. These reports provide an overview of radiation exposures received each year as well as identification of trends in exposures being experienced over the years.

In 1968, the U.S. Atomic Energy Commission (AEC) established a program for reporting certain occupational radiation exposure information to a central radiation records repository. At the same time, a contract was made with Union Carbide Corporation at Oak Ridge, Tennessee, to computerize the processing of the radiation exposure reporting system. Annual summary reports were published from 1969 through 1973 (WASH-1350-R1 through WASH-1350-R6), and included information on AEC contractor employees and visitors, as well as employees and visitors of companies in the private sector licensed by the AEC.

In January 1975, with the separation of the AEC into the Energy Research and Development Agency (ERDA) and the U.S. Nuclear Regulatory Commission (NRC), each agency assumed responsibility for collecting and maintaining occupational exposure information reported by the facilities under its jurisdiction. Former AEC licensees reported to the NRC while contractors reported to ERDA. At the same time, a contract was made with Union Carbide Corporation at Oak Ridge, Tennessee, to computerize the reporting and processing of both the ERDA and NRC radiation exposure reporting systems. On October 1, 1977, DOE was formed and assumed the responsibilities of ERDA. Processing and programming of exposure information continued at Oak Ridge until October 1978, when the management and further development of the DOE radiation exposure reporting system was assigned to the System Safety Development Center, EG\&G Idaho, Inc.; the NRC system remained at Oak Ridge.

Radiation exposure data for ERDA and ERDA contractor employees and visitors for 1974 through 1976 were reported in ERDA 76/119, ERDA 77-29, and DOE/EV-0011/9. The DOE and DOE contractor radiation exposure data for 1977, 1978, and 1979 were presented in DOE/EV-0066/10, 11, and 12, respectively. This report contains 1980 radiation exposure data for DOE and DOE contractors. A revised version of the 1979 report was issued.

Previous reports for AEC/ERDA/DOE government and contractor employees and visitors may be obtained from the U.S. DOE Technical Information Center, P.O. Box 62, Oak Ridge, TN 37830.

SUMMARY

All Department of Energy (DOE) and DOE contractors are required by DOE Order 5484.1, Chapter IV to submit occupational exposure records to a central repository. The data required includes a summary of whole-body exposures to ionizing radiation, a summary of internal depositions of radioactive materials above specified limits, and occupational exposure reports for terminating employees. This report is a summary of the data submitted by DOE and DOE contractors for 1980.

A total of 85,465 DOE and DOE contractor employees were monitored for whole-body ionizing radiation exposures in 1980. This represents 62.1% of all DOE and DOE contractor employees and is a decrease from the number of individuals monitored in 1979. In addition to the employees, 87,590 visitors were monitored.

Of all employees monitored, 52.72% received a dose equivalent that was less than measurable, 45.51% a measurable exposure less than 1 rem , and 1.77% an exposure greater than 1 rem. The exposure received by 87.96% of the visitors to DOE facilities was less than measurable. Only 12.03% of the visitors received a measurable exposure less than 1 rem, and 0.01% of the visitors received an exposure greater than 1 rem. No employees or visitors received a dose equivalent greater than 4 rem.

The collective dose equivalent for DOE and DOE contractor employees was 7,405 person-rem. The collective dose equivalent for visitors was 619 person-rem. The total dose equivalent for employees and visitors combined was 8,024 person-rem. The average dose equivalent for all individuals (employees and visitors) monitored was 46 mrem and the average dose equivalent for all employees who received a measurable exposure was 187 mrem . The highest average dose equivalent was observed for employees monitored at fuel processing facilities (333 mrem) and the lowest among visitors (7 mrem) to DOE facilities. These averages are significantly less than the DOE 5-rem/year radiation protection standard for whole-body exposures.

Five cases of internal depositions were reported in 1980. In all cases, the depositions were less than the annual dose-equivalent standard. Internal depositions were the result of accidental, not planned, exposures.

A total of 8,968 monitored employees terminated their employment in 1980. The average cumulative dose equivalent for terminated employees who worked one to two years was 0.36 rem; three to four years, 0.57 rem; five to six years, 0.57 rem ; and longer than six years, 2.97 rem . The average cumulative dose equivalent for employees who terminated with more than six years of employment appears high in comparison with the other data. However, this average includes the cumulative exposure of individuals who worked for DOE or DOE contractors for over 20 years.

Seven individuals terminated their employment with two or more DOE employers during one calendar quarter in 1980. The average individual quarterly dose equivalent for these transient workers was 1.22 rem, which is less than the quarterly radiation protection standard of 3 rem.

CONTENTS

PREFACE iii
SUMMARY V
INTRODUCTION 1
SUMMARY OF WHOLE-BODY IONIZING RADIATION EXPOSURES 2
DISTRIBUTION BY DOSE INTERVAL 2
DISTRIBUTION BY FACILITY TYPE 9
DISTRIBUTION BY FIELD ORGANIZATION 11
SUMMARY OF INTERNAL EXPOSURES 14
SUMMARY OF WORKER TERMINATIONS 15
SUMMARY OF TRANSIENT WORKERS 16
APPENDIX A-DISTRIBUTION OF ANNUAL WHOLE-BODY EXPOSURES BY FACILITY TYPE FOR EACH DOE FIELD ORGANIZATION, 1980 A. 1
APPENDIX B-DISTRIBUTION OF ANNUAL WHOLE-BODY EXPOSURES BY CONTRACTOR FOR EACH DOE FIELD ORGANIZATION, 1980 B. 1
APPENDIX C—DISTRIBUTION OF ANNUAL WHOLE-BODY EXPOSURES FOR DOE GOVERNMENT EMPLOYEES AND VISITORS BY DOE FIELD ORGANIZATION, 1980 C. 1

FIGURES

1 Comparison of Number of Employees, Number of Employees Monitored, and Number of Employees Monitored Who Received No Measurable Dose Equivalent 4
2 Percent of Monitored Employees and Percent of Monitored Visitors Who Received an Exposure Less Than Measurable, Less Than 1 rem, or Greater Than 1 rem 5
3 Contribution of Each Dose-Equivalent Interval to the Total Collective Dose Equivalent, 1980 6
4 Total Collective Dose Equivalent for all DOE/DOE Contractor Employees Who Received an Exposure Greater Than 1 rem, 1965-1980 8
5 Contribution of Each Facility Type to the Total Collective Dose Equivalent 9
TABLES
1 Radiation Protection Standards for External and Internal Dose Equivalents for Individuals in Controlled Areas 1
2 Distribution of Whole-Body lonizing Radiation Exposures for DOE/DOE Contractor Employees and Visitors by Dose-Equivalent Interval 3
3 Distribution of Whole-Body Ionizing Radiation Exposures for DOE/DOE Contractor Employees, 1965-1980 7
4 Distribution of Annual Whole-Body Exposures for DOE/DOE Contractor Employees and Visitors by Facility Type, 1980 10
5 Collective Dose Equivalent for DOE/DOE Contractor Employees and Visitors by Facility Type, 1980 11
6 Collective Dose Equivalent for DOE/DOE Contractor Employees and Visitors by Field Organization, 1980 12
$7 \quad$ Fraction of Collective Dose Equivalent for DOE/DOE Contractor Employees and Visitors Attributed to a Facility Type Within Each Field Organization, 1980. 13
8 Collective Dose Equivalent for DOE/DOE Contractor Employees and Visitors by Field Organization, 1975-1980 14
9
Dose Distributions for Cases of Internal Body Depositions, 1977-1980 15
10
Average Cumulative Dose Equivalent for Individuals Terminating in 1980 16
11
Summary of Transient Workers, 1973-1980 16
A. 1 Distribution of Annual Whole-Body Exposures by Facility Type- Albuquerque Field Organization, 1980 A. 1
A. 2 Distribution of Annual Whole-Body Exposures by Facility Type- Chicago Field Organization, 1980 A. 2
A. 3 Distribution of Annual Whole-Body Exposures by Facility Type- Grand Junction Field Organization, 1980 A. 3
A. 4 Distribution of Annual Whole-Body Exposures by Facility Type- Idaho Field Organization, 1980 A. 4
A. 5 Distribution of Annual Whole-Body Exposures by Facility Type- Nevada Field Organization, 1980 A. 5
A. 6 Distribution of Annual Whole-Body Exposures by Facility Type- Oak Ridge Field Organization, 1980 A. 6
A. 7 Distribution of Annual Whole-Body Exposures by Facility Type- Pittsburgh Naval Reactor Field Organization, 1980 A. 7
A. 8 Distribution of Annual Whole-Body Exposures by Facility Type- Richland Field Organization, 1980 A. 8
A. 9 Distribution of Annual Whole-Body Exposures by Facility Type- San Francisco Field Organization, 1980 A. 9
A. 10 Distribution of Annual Whole-Body Exposures by Facility Type- Savannah River Field Organization, 1980 A. 10
A. 11 Distribution of Annual Whole-Body Exposures by Facility Type- Schenectady Naval Reactor Field Organization, 1980 A. 11
B. 1 Distribution of Annual Whole-Body Exposures by Contractor- Albuquerque Field Organization, 1980 B. 1
B. 2 Distribution of Annual Whole-Body Exposures by Contractor- Chicago Field Organization, 1980 B. 4
B. 3 Distribution of Annual Whole-Body Exposures by Contractor- Grand Junction Field Organization, 1980 B. 6
B. 4 Distribution of Annual Whole-Body Exposures by Contractor- Idaho Field Organization, 1980 B. 7
B. 5 Distribution of Annual Whole-Body Exposures by Contractor-
Nevada Field Organization, 1980 B. 10
B. 6 Distribution of Annual Whole-Body Exposures by Contractor- Oak Ridge Field Organization, 1980 B. 13
B. 7 Distribution of Annual Whole-Body Exposures by Contractor- Pittsburgh Naval Reactor Field Organization, 1980 B. 16
B. 8 Distribution of Annual Whole-Body Exposures by Contractor- Richland Field Organization, 1980 B. 17
B. 9 Distribution of Annual Whole-Body Exposures by Contractor- San Francisco Field Organization, 1980 B. 19
B. 10 Distribution of Annual Whole-Body Exposures by Contractor- Savannah River Field Organization, 1980 B. 21
B. 11 Distribution of Annual Whole-Body Exposures by Contractor- Schenectady Naval Reactor Field Organization, 1980 B. 22
C. 1 Distribution of Annual Whole-Body Exposures for DOE Government Employees and Visitors by DOE Field Organization, 1980 C. 1

THIRTEENTH ANNUAL REPORT RADIATION EXPOSURES FOR DOE AND DOE CONTRACTOR EMPLOYEES

 1980
INTRODUCTION

One of the basic Department of Energy (DOE) radiation protection policy objectives is that radiation exposures be maintained as low as is reasonably achievable (ALARA) and within the occupational exposure guidelines provided in DOE Order 5480.1, Chapter XI (Table 1). Assurance that occupational exposures do not exceed the guidelines is not considered, in itself, sufficient. All operations are to be conducted "in a manner to assure that radiation exposures to individuals and population groups are limited to the lowest levels technically and economically feasible."

TABLE 1. Radiation Protection Standards for External and Internal Dose Equivalents for
Individuals in Controlled Areas

Type of Exposure	Exposure Period	Dose Equivalent (Dose or Dose Commitment)(rem)(a)
Whole body, head and trunk, gonads, lens of the eye,(b) red bone marrow, active blood-forming organs.	Year Calendar quarter	$\begin{aligned} & 5(\mathrm{c}) \\ & 3 \end{aligned}$
Unlimited areas of the skin (except hands and forearms), other organs, tissues, and organ systems (except bone)	Year Calendar quarter	$\begin{array}{r} 15 \\ 5 \end{array}$
Bone	Year Calendar quarter	$\begin{aligned} & 30 \\ & 10 \end{aligned}$
Forearms(${ }^{\text {d }}$)	Year Calendar quarter	$\begin{aligned} & 30 \\ & 10 \end{aligned}$
Hands(d) and feet	Year Calendar quarter	$\begin{aligned} & 75 \\ & 25 \end{aligned}$

(a)To meet the dose commitment standards above, operations must be conducted in such a manner that it would be unlikely that an individual would assimilate in a critical organ, by inhalation, ingestion, or absorption, a quantity of radionuclide(s) that would commit the individual to an organ dose which exceeds the limits specified in this table.
(b)A beta exposure below a maximum energy of 700 keV will not penetrate the lens of the eye; therefore, the applicable limit for these energies would be that for the skin ($15 \mathrm{rem} / \mathrm{year}$).
(c) In special cases with the approval of the Director, Division of Operational and Environmental Safety, a worker may exceed 5 rem/year provided his/her average exposure per year since age 18 will not exceed 5 rem/year.
(d)All reasonable effort shall be made to keep exposure of forearms and hands to the general limit for the skin.

To assist in the determination that exposures to individuals are maintained at the lowest level practicable, DOE requires the submittal of occupational radiation exposure records to a central repository. The data required includes a summary of whole-body exposure to ionizing radiation, a summary of internal depositions of radioactive materials, and occupational exposure reports for terminating employees. The central data base also includes occupational radiation exposure information for the Atomic Energy Commission (AEC) and the Energy Research and Development Agency (ERDA).
This report is a summary of the data submitted in 1980 by DOE and DOE contractor offices. For the purpose of trend analysis, the data is compared to that reported in previous years. The data used to prepare this report is presented in Appendix A, "Distribution of Whole-Body Exposures by Facility Type for Each DOE Field Organization, 1980"; Appendix B, "Distribution of Annual Whole Body Exposures by Contractor for Each DOE Field Organization, 1980"; and Appendix C, "Distribution of Annual Whole-Body Exposures for DOE Government Employees and Visitors by DOE Field Organization, 1980."

SUMMARY OF WHOLE-BODY IONIZING RADIATION EXPOSURES

Monitoring is required by DOE Order 5480.1, Chapter XI, where the potential exists for an individual to receive a dose or dose commitment in any calendar quarter in excess of the 10% of the quarterly or annual occupational exposure guidelines shown in Table 1. Depending on the administrative policy of the contractor, monitoring may also be provided to individuals, such as clerical workers, for whom the exposure potential is extremely low.

The number of individuals who received an occupational whole-body exposure in one of 18 doseequivalent intervals ranging from "less than measurable" to "greater than 10 rem" is provided annually by each DOE contractor and DOE office. A positive, measurable exposure is any recorded exposure greater than the minimum sensitivity of a personnel monitoring device. The data is further subdivided into one of 10 facility types.

Contractors have the option of reporting the distribution of whole-body occupational dose equivalents only for those individuals for whom monitoring is required, or for all those for whom monitoring is provided. Many contractors choose to report the latter, thus increasing the number of individuals who are considered to be radiation workers. To account for this effect, the average dose equivalent per individual receiving a measurable exposure is calculated as well as the average dose equivalent per individual monitored.

The annual collective dose equivalent is calculated by multiplying the number of individuals in each dose range by the midpoint of the range, and then summing the products. This procedure allows an estimate of the collective dose equivalent to be calculated without knowledge of each individual's annual dose. However, a source of error is introduced into the calculation by the assumption that the midpoint of the dose-equivalent range is the mean dose equivalent of the individuals reported in each dose-equivalent range. Frequently, the actual mean dose equivalent in each range is less than the assumed arithmetic mean. Thus, collective dose equivalents presented in this report may be slightly higher than the actual collective dose equivalents.

DISTRIBUTION BY DOSE INTERVAL

The number of employees and visitors who received a dose equivalent in each of 18 dose-equivalent ranges is presented in Table 2. There were no DOE employees or visitors who received a dose equivalent greater than 4 rem. A total of 85,465 DOE and DOE contractor employees were monitored for whole-body ionizing radiation exposure in 1980. This represents 62.1% of all DOE and DOE contractor employees. In addition to the employees, 87,590 visitors were monitored at DOE facilities. Visitors may include radiation workers from another DOE facility present on an interim basis.

TABLE 2. Distribution of Whole Body Ionizing Radiation Exposures for DOE/DOE Contractor Employees and Visitors by Dose-Equivalent Interval

Dose-Equivalent Interval

Employess		Visitors		Total
45,054		77,045		122,099
29,384		10,109		39,493
4,902		341		5,243
2,674		62		2,736
1,244		18		1,262
691		9		700
1,113		4		1,117
387		2		389
16		0		16
0		0		0
0		0		0
0		0		0
0		0		0
0		0		0
0		0		0
0		0		0
85,465		87,590		173,055

Collective Person-rem		
Employees	Visitors	Total
0	0	0
1,470	505	1,975
858	60	918
1,003	23	1,026
777	12	789
604	8	612
1,670	6	1,676
967	5	972
56	0	56
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
7,405	619	8,024

A comparison of DOE and DOE contractor employees, the number of employees monitored and the number of employees who did not receive a measurable dose equivalent in the last five years is presented in Figure 1. The number of employees monitored in 1980 decreased from the number reported in previous years (Figure 1). This was primarily due to the decision of a contractor to report only the dose-equivalent distribution for those employees for whom monitoring is required rather than all employees.

Of all employees monitored, 52.72% received a dose equivalent that was less than measurable, 45.51% a measurable exposure less than 1 rem , and 1.77% an exposure greater than 1 rem (Figure 2). The exposure received by 87.96% of the visitors to DOE facilities was less than measurable. Only 12.03% of the visitors received an exposure between measurable and 1 rem, and 0.01% of the visitors received an exposure greater than 1 rem (Figure 2).

SON甘SกOHI NI S $\exists \exists \lambda 07 d W \exists ~ J 0 ~ y \exists 8 W \cap N ~$

FIGURE 2. Percent of Monitored Employees and Percent of Monitored Visitors Who Received an Exposure Less Than Measurable, Less Than 1 rem, or Greater Than 1 rem

The collective dose equivalent was 7,405 person-rem for all DOE and DOE contractor employees, and 619 person-rem for visitors to DOE facilities, for a total collective dose equivalent of 8,024 person-rem. The contribution of the individuals in each dose-equivalent interval to the collective dose equivalent is shown in Figure 3. Individuals whose exposure was less than 1 rem contributed the greatest portion of the total person-rem.

The distribution of whole-body exposures for the years 1965-1980 is presented in Table 3. As can be observed in Table 3, the number of employees who received a dose equivalent greater than 1 rem has gradually declined since 1965. This same downward trend in the occupational exposures can be observed in Figure 4 that shows the collective dose equivalent for all individuals from 1965 to 1980 who received an exposure greater than 1 rem. The collective dose equivalent for individuals who received an exposure less than 1 rem was not included because prior to 1974, a less-than-measurable exposure was not distinguished from measurable exposures in the reporting system. This decrease in the collective dose equivalent has been achieved even though some work was performed in older facilities which were not constructed using current design criteria. This trend reflects both changes in the nature of the work performed at DOE facilities and the consistent application of ALARA practices throughout all DOE operations.

FIGURE 3. Contribution of Each Dose-Equivalent Interval to the Total Collective Dose Equivalent, 1980
TABLE 3. Distribution of Whole-Body lonizing Radiation Exposures for DOE/DOE Contractor Employees, 1965-1980

Year	Dose Equivalent Ranges (rem)														Total Monitored
	0-1(a)			2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	10-11	11-12	>12	
	<Meas.	Meas. -1	1-2												
1965		360	4,158	1,704	515	294	70	32	26	25	22	6	2		135,214
1966		522	3,706	1,630	593	313	88	47	24	6	2			1	137,932
1967		510	3,472	1,572	555	168	35	29	23	17	4	1			108,386
1968		206	2,799	1,408	425	144	3	1							107,986
1969		625	2,554	1,313	335	86	4					1			102,918
1970		185	2,698	1,329	279	158	5	4	2		1				96,661
1971		640	2,380	888	275	118	8	3				1		2	94,315
1972		077	2,130	929	219	95	8	2							89,460
1973		, 071	1,944	727	172	60	2	1							91,977
1974	43,184	32,500	1,667	688	149	40	4								78,232
1975	43,310	42,141	1,846	753	232	142				1					88,425
1976	40,083	47,886	1,679	475	70	6	1								90,200
1977	43,017	49,948	1,579	545	103	23			1	2				2	95,220
1978	44,898	55,296	1,323	439	53	11									102,020
1979 ${ }^{(b)}$	50,003	53,235	1,286	416	33	10	1				0			2	104,986
1980	45,054	38,895	1,113	387	16										85,465

(a)Separation of data prior to 1974 is unavailable.
(b)The 1979 data differs slightly from those listed in the original 1979 report because of an error in the dose-equivalent calculation by a contractor.

FIGURE 4. Total Collective Dose Equivalent for All DOE/DOE Contractor Employees Who Received an Exposure Greater Than 1 rem, 1965-1980

DISTRIBUTION BY FACILITY TYPE

The number of individuals and the distribution of the annual whole-body exposures in each of 11 facility categories was reported to the central repository. For the purpose of this report, visitors were considered a facility type. The contribution of each facility type to the collective dose equivalent is shown in Figure 5. The largest percentage of the total collective dose equivalent was in the category "Other." Examples of facilities included in the "Other" category include radioactive waste handling and construction. "General Research" was a close second. As would be expected, the smallest contribution was from DOE offices. A summary of the data submitted is presented in Table 4.

FIGURE 5. Contribution of Each Facility Type to the Total Collective Dose Equivalent
TABLE 4. Distribution of Annual Whole-Body Exposures for DOE/DOE Contractor Employees and Visitors by Facility Type, 1980

The average dose equivalent by facility type per individual monitored and per individual monitored with measurable exposure is shown in Table 5 . The average dose equivalent per individual monitored for all facilities combined was 46 mrem . The highest average dose equivalent per individual monitored was observed at fuel processing facilities (333 mrem) and the lowest was observed for visitors to DOE facilities (7 mrem). The average dose equivalent per individual monitored with a measurable exposure was 158 mrem . The highest average dose equivalent for all monitored employees was observed at fuel processing facilities (442 mrem) and the lowest was observed for DOE office personnel (56 mrem).

TABLE 5. Collective Dose Equivalent for DOE/DOE Contractor Employees and Visitors by Facility Type, 1980

Facility Type	No. Individuals Monitored	No. Individuals With Measurable Exposure	Total No. Person-rem	Average Dose Equivalent (mrem) Per Individual Monitored	Average Dose Equivalent (mrem) Per Individual Monitored With Measurable Exposures
Reactor	6,921	4,267	1,185	171	277
Fuel Fab.	2,102	1,368	323	153	236
Fuel Proc.	3,147	2,369	1,047	333	442
Uran. Enrich.	1,871	1,336	156	83	117
Weapon F\&T	15,904	7,245	869	54	120
Gen. Research	36,110	13,177	1,611	44	122
Accelerator	5,315	1,968	412	77	209
Other	12,037	8,167	1,773	147	217
Visitors	87,590	10,545	619	7	58
DOE Offices	2,058	514	29	14	56
TOTAL	173,055	50,956	8,024	46	158

DISTRIBUTION BY FIELD ORGANIZATION

For each field organization, the number of employees monitored and the collective dose equivalent are shown in Table 6. Differences in the collective dose equivalent at each field organization reflect differences in the nature of the work performed and the administrative policy concerning whether the dose distribution is reported for all employees or only for those for whom monitoring is required. Table 7 provides an indication of the work done at each field organization by showing what fraction of the collective dose equivalent at each field organization is attributed to each facility type. Trends in collective dose equivalent from 1975 to 1980 can be observed for each field organization in Table 8.
TABLE 6. Collective Dose Equivalent for DOE/DOE Contractor Employees and Visitors by Field Organization, 1980

Average Dose Equivalent (mem)
Per Individual Monitored
With Measurable Exposures

$$
\text { in } \hat{f} \text { in in }
$$

$$
\%
$$

끙
i

$$
\begin{aligned}
& \hat{0} \\
& \hat{O}
\end{aligned}
$$

 No.
Individuals
monitored30,163
19,475
180
38,651Kin
0

0$\frac{9}{2}$$\begin{array}{r}5,828 \\ 2,606 \\ 9,466 \\ 30,725 \\ \\ 2,295 \\ 11,747 \\ \hline\end{array}$173,055 | Field |
| :---: |
| Organization | Albuquerque

Chicago
Grand Junction Idaho Nevada Oak Ridge Pittsburgh Naval Reactor Richland San Francisco
Schenectady Naval Reactor Savannah River total

$$
\begin{aligned}
& \text { No. Individuals } \\
& \text { Kith Measurable }
\end{aligned}
$$

xposure

$$
\begin{aligned}
& \text { h Measurable } \\
& \text { Exposure }
\end{aligned}
$$

$$
17,386
$$

$$
51
$$

$$
1,901
$$

$$
\begin{gathered}
\text { Collective } \\
\text { Dose } \\
\text { Equivalent } \\
\text { (Person-rem) }
\end{gathered}
$$

$$
\begin{array}{r}
1,700 \\
918 \\
9
\end{array}
$$

$$
\begin{array}{r}
186 \\
2,256
\end{array}
$$

$$
\begin{array}{r}
240 \\
79 \\
1,391 \\
\hline
\end{array}
$$

$$
2
$$

$$
\begin{aligned}
& 104 \\
& 71
\end{aligned}
$$

$$
\begin{array}{r}
238 \\
8 \\
34 \\
118 \\
\hline
\end{array}
$$

TABLE 7. Fraction of Collective Dose Equivalent for DOE/DOE Contractor Employees and Visitors Attributed to a Facility Type Within Each Field Organization, 1980

Field Organization	Facility Type									
	$\underline{\text { Reactor }}$	Fuel Fab.	Fuel Proc.	Uran. Enrich.	Weapon F\&T	Gen. Research	Acceler.	Other	Visitor	DOE Office
Albuquerque					0.45	0.30		<0.01	0.24	0.01
Chicago	0.04					0.32	0.44	0.09	0.11	
Grand Junction								1.00		
Idaho	0.31		0.68							0.01
Nevada					0.44				0.46	
Oak Ridge		0.18		0.26	0.08	0.36		0.10	0.02	
Pittsburgh Naval Reactor	0.42					0.52		0.01	. 04	0.01
Richland	0.29	0.02				0.09		0.58	0.02	<0.01
San Francisco		0.21			0.01	0.69	0.03		0.06	
Savannah River	0.13	0.09	0.46		0.02	0.06		0.22	0.01	<0.01
Schenectady Naval Reactor	0.56					0.37		0.01	0.05	0.01
ALL FIELD ORGANIZATIONS										
COMBINED	0.15	0.04	0.13	0.02	0.11	0.20	0.05	0.22	0.08	<0.01

TABLE 8. Collective Dose Equivalent for DOE/DOE Contractor Employees and Visitors by Field Organization, 1975-1980(a)

Field Organization	1975	1976	1977	1978	1979	1980
Albuquerque	2,324	1,437	2,300	2,399	1,873	1,700
Chicago	1,638	1,354	1,373	1,167	1,061	918
Grand Junction	5	<1	<1	2	8	9
Idaho	611	790	929	899	876	593
Nevada	55	25	49	47	55	50
Oak Ridge	1,284	1,351	1,300	1,566	1,332	604
Pittsburgh Naval Reactor	1,876	1,609	653	252	196	186
Richland	2,257	2,265	3,197	2,596	2,571	2,256
San Francisco	283	285	334	307	264	240
Schenectady Naval Reactor	1,022	203	148	111	114	79
Savannah River	1,268	1,278	1,298	1,289	1,343	1,391
TOTAL	12,622	10,597	11,581	10,635	9,693	8,024

$\overline{\text { (a)Throughout this report, minor variations in collective dose-equivalent values may occur due }}$ to computer rounding.
(b)The 1979 data differ slightly from those listed in the 1979 report because of an error in the dose-equivalent calculation by a contractor.

SUMMARY OF INTERNAL EXPOSURES

Internal body depositions of radioactive material result from accidental, not planned, exposures. A report of internal body deposition of radioactive materials is required when:

1. any uptake of radioactive material occurred during the reporting year that either independently or when added to a current burden was estimated to result in a dose commitment to the critical organ in excess of 50% of the pertinent annual dose equivalent standard set forth in DOE Order 5484.1, Chapter XI; or when
2. any previously unreported uptake of radioactive material was determined to have been reportable according to the above criteria by reason of the most recent dose-equivalent estimates.

Table 9 gives a four-year comparison of new cases of internal body depositions. Only those cases occurring within each year are included. Cases where the effects of prior years' depositions are continuing or where a new uptake is not clearly identified are not included.

TABLE 9. Dose Distributions for Cases of Internal Body Depositions, 1977-1980

Year	Radionuclide	Critical Organ	Dose Equivalent Interval (rem)					
			7.5-10	10-15	15-25	25-50	-50-100	100-200
1977	${ }^{238} \mathrm{Pu}$	Lung	1		1	1		
1978	$\begin{aligned} & { }^{239} \mathrm{Pu},{ }^{240} \mathrm{Pu},{ }^{241} \mathrm{Pu} \end{aligned}$	Lung Thyroid	$\begin{aligned} & 1 \\ & 1 \end{aligned}$					
1979	${ }^{234} \mathrm{U},{ }^{235} \mathrm{U},{ }^{238} \mathrm{U}$	Lung	2					
1980	$\begin{aligned} & { }^{238} \mathrm{Pu} \\ & { }^{234} \mathrm{U}, 235 \mathrm{U},{ }^{238} \mathrm{U} \end{aligned}$	Bone Lung	1		3(a)	1(b)		

[^0]Of 13 reported internal deposition cases for 1980, five are considered new and are included in Table 9. The 8 remaining cases are not included for the following reasons: in seven cases, the current burden has decreased from the measured level of previous years. These instances are judged as continued tracking of a previous uptake. In one other case, the reported current burden was slightly higher than was previously measured, indicating either a re-evaluation of the burden, or a possible new uptake.

SUMMARY OF WORKER TERMINATIONS

A total of 8,929 monitored workers terminated their employment with DOE or DOE contractors in 1980. Table 10 gives the length of employment as well as the average cumulative dose equivalent for the workers in each time interval. These data indicate that the average cumulative dose equivalent for workers terminating in 1980 after 1 to 365 days of employment was significantly less than the 5 rem/year radiation protection standard for the whole body.

The average cumulative dose equivalent for workers who terminated after more than six years of employment was 2.97 rem. This average appears high in comparison with the average cumulative dose equivalent for employees who terminated with less than six years of employment. However, this average includes the cumulative exposure of individuals who worked for DOE or DOE contractors for more than 20 years.

TABLE 10. Average Cumulative Dose Equivalent for Individuals Terminating in 1980

Length of Employment	Number of Terminated Employees	Total Cumulative Dose Equivalent (Person-rem)	Average Cumulative Dose Equivalent Per Terminated Employee (rem)
1-90 days	1,709	596.54	0.35
90-180 days	892	265.42	0.30
180-365 days	1,164	472.32	0.41
1-2 years	1,267	460.31	0.36
3-4 years	1,281	735.59	0.57
5-6 years	566	321.30	0.57
>6 years	2,050	6082.14	2.97

SUMMARY OF TRANSIENT WORKERS

Seven individuals terminated their employment with two or more employers during one calendar quarter in 1980. The average individual quarterly dose equivalent for these transient workers was 1.22 rem, which is less than the quarterly radiation protection standard of 3 rem for the whole body (Table 1). This average dose equivalent is greater than that observed in 1979, when the two individuals who terminated with two or more employers in one calendar quarter did not receive a measurable dose equivalent (Table 11).

TABLE 11. Summary of Transient Workers, 1973-1980

Year	Number of Transient Workers	Total Person-rem Accumulated	Average Individual Quarterly Exposure (rem)
1973	62	140.49	2.27
1974	26	31.19	1.20
1975	8	22.71	2.84
1976	9	2.48	0.28
1977	12	2.01	0.17
1978	9	0.20	0.02
1979	2	0.00	0.00
1980	7	8.55	1.22
TOTAL	135	207.63	1.54

APPENDIX A

DISTRIBUTION OF ANNUAL WHOLE-BODY EXPOSURES BY FACILITY TYPE FOR EACH DOE FIELD ORGANIZATION, 1980

TABLE A. 2
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY FACILITY TYPE
CHICAGO FIELD ORGANIZATION
1980

TABLE A. 4
DISTRIBUTION OF ANNUAL WHOLE BODY
IDAHO FIELD ORGAN
1980

Dose Equivalent Ranges (rem)																		
Facility Type	Total Monitored	Meas.	Meas.- 0.10	$\begin{aligned} & 0.10- \\ & 0.25 \end{aligned}$	$\begin{array}{r} 0.25- \\ 0.50 \\ \hline \end{array}$	$\begin{gathered} 0.50- \\ 0.75 \end{gathered}$	$\begin{aligned} & 0.75- \\ & 1.00 \\ & \hline \end{aligned}$	1-2	2-3	3-4	4-5	5-6	6-7		8-9	9-10	>10	Total Person-rem
Reactor	3014	1934	682	219	100	41	14	24										184
Fuel Fabrication																		
Fuel Processing	1350	617	298	104	80	65	34	109	43									404
Uran. Enrichment																		
Weapon F\&T																		
Gen. Research																		
Accelerator																		
Other																		
Visitors	34058	34057	1															
DOE Offices	229	142	82	5														5
TOTAL	38651	36750	1063	328	180	106	48	133	43									593
TOTAL PERSON-REM			53	57	68	66	42		107									593

Dose Equivalent Ranges (rem)																		
Facility Type	Total Monitored	Meas.	$\begin{gathered} \text { Meas.- } \\ 0.10 \\ \hline \end{gathered}$	$\begin{gathered} 0.10- \\ 0.25 \\ \hline \end{gathered}$	$\begin{aligned} & 0.25- \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.50- \\ & 0.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75- \\ & 1.00 \\ & \hline \end{aligned}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	≥ 10	Total Person-rem
Reactor																		
Fuel Fabrication	722	134	320	146	74	22	18	8										111
Fuel Processing																		
Uran. Enrichment	1871	535	861	364	87	19	4	1										156
Weapon F\&T	287	21	127	75	47	12	3	2										50
Gen. Research	1419	552	524	141	83	47	24	37	10	1								216
Accelerator																		
Other	1119	7	1098	11	3													58
Visitors	410	329	56	8	9	5	3											13
DOE Offices																		
TOTAL	5828	1578	2986	745	303	105	52	48	10	1								604
TOTAL PERSON-RE			149	130	114	66	45	72	25	3								604

TABLE A. 7
DISTRIBUTION OF ANNUAL WHOLE BODY
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY FACIIITY TYPE
PITISBURGH NAVAL REACTORS FIELD ORGANIZATION
1980

Dose Equivalent Ranges (rem)																		
Facility Type	Total Monitored	Meas.	Meas.0.10	$\begin{aligned} & 0.10- \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.25- \\ 0.50 \\ \hline \end{array}$	$\begin{aligned} & 0.50- \\ & 0.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75- \\ & 1.00 \\ & \hline \end{aligned}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	>10	Total Person-rem
Reactor	947	106	651	131	52	7												79
Fuel Fabrication																		
Fuel Processing																		
Uran. Enrichment																		
Weapon F\&T																		
Gen. Research	1342	214	944	116	56	10	2											97
Accelerator																		
Other	26	11	14	1														1
Visitors	239	109	130															7
DOE Offices	52	9	41	2														2
total	2606	449	1780	250	108	17	2											186
TOTAL PERSON-REM			89	44	40	11	2											186

dISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY FACILITY TYPE RICHLAND FIELD ORGANIZATION

$\begin{array}{c}\text { Total } \\ \text { Person-rem }\end{array}$
652
39

ce s
$\downarrow \varepsilon$
$.0 \downharpoonright \varepsilon \iota$

$9\llcorner Z$

Dose Equivalent Ranges (rem)																		
Facility Type	Total Monitored	$<$ Meas.	Meas.0.10	$\begin{aligned} & 0.10- \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.25- \\ 0.50 \\ \hline \end{array}$	$\begin{gathered} 0.50- \\ 0.75 \end{gathered}$	$\begin{aligned} & 0.75- \\ & 1.00 \\ & \hline \end{aligned}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	≥ 10	Total Person-rem
Reactor	685	15	172	79	71	37	39	136	134	2								652
Fuel Fabrication	82	1	17	26	19	8	2	3	6									39
Fuel Processing																		
Uran. Enrichment																		
Weapon F\&T																		
Gen. Research	2273	273	1640	209	78	30	26	16	1									216
Accelerator																		
Other	4664	498	2480	520	404	226	146	301	89									1310 -
Visitors	1697	1086	596	10	3	2												34
$\begin{array}{lllllll}\text { DOE Offices } & 65 & 10 & 44 & 9 & 2 & \end{array}$																		
total	9466	1883	4949	853	577	303	213	456	230	2								2256
TOTAL			248	149	217	190	186	684	575	7								2256

$$
\dot{\infty} \mid
$$

$8 \cdot \forall 318 \forall 1$

[^1]distribution of annual whole abdo
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY FACILITY TYPE SAVANNAH RIVER FIELD ORGANIZATION
1980

APPENDIX B

DISTRIBUTION OF ANNUAL WHOLE-BODY EXPOSURES BY CONTRACTOR FOR EACH DOE FIELD ORGANIZATION, 1980

TABLE B. 1 DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR ALBUQUERQUE FIELD ORGANIZATION 1980 Dose Equivalent Ranges (rem)																
Contractor	$<$ Meas.	Meas.- 0.10	$\begin{aligned} & 0.10- \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.25- \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.50- \\ & 0.75 \end{aligned}$	$\begin{aligned} & 0.75- \\ & 1.00 \\ & \hline \end{aligned}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	$\underline{9-10}>10$	Total Person-rem
Albuquerque Misc.																
Employees Visitors		862	3	1												44
Total		862	3	1												44
General Electric Co.																
Employees Visitors	239 7	$\begin{array}{r} 105 \\ 1 \end{array}$	18	5	1											11
Total	246	106	18	5	1											11
Inhalation Toxicology																
Employees	298	54	7	3	2		1									
Visitors	273	2					1									8
Total	571	56	7	3	2		1									8
Mason \& Hanger-Silas																
Employees	106	448	117	43	28	5		10								
Visitors Total	861	78	1	43	28	5	27	10	2							153
Total	967	526	117	43	28	5			2							4 157
Monsanto Research Co.																
Employees	613	860	61	18	8	4	1									
Visitors	707	20					1									70
Total	1320	880	61	18	8	4	1									71

TABLE B. 1 (Continued)
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR

Contraetor	$<$ Meas.	Meas.0.10	$0.10-$	$\begin{aligned} & 0.25- \\ & 0.50 \end{aligned}$	$0.50-$	$0.75-$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	$9-10>10$	Total Person-rem
Rockwell International																
Employees		3192	286	185	88	65	59	4								489
Visitors		6674														334
Total		9866	286	185	88	65	59	4								823
Ross Aviation, Inc.																
Employees	46	6														
Visitors																
Total	46	6														
Sandia Laboratories, NM																
Employees	1968	492	66	19	13	,	5	1	2							69
Visitors	1370	313	24	1	3	1										23
Total	3338	805	90	20	16	2	5	1	2							92
Sandia Laboratories, CA																
Employees	624	260	3	1												. 14
Visitors	147	1														
Total	771	261	3	1												14
Teledyne Isotopes																
Employees Visitors	22	1	6	7			1									5
Total	22	1	6	7			1									5

DISTRIBUTION OF ANNUAL WHOLLE BODY EXPOSURES BY CONTRACTOR
ALBUQUERQUE FIELD ORGANIZATION
1980

Dose Equivalent Ranges (rem)																	
Contractor	$<$ Meas.	Meas.0.10	$\begin{aligned} & 0.10- \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.25- \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.50- \\ & 0.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75- \\ & 1.00 \end{aligned}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	>10	Total Person-rem
The Bendix Corp.																	
Employees Visitors	188	30	3														2
Total	188	30	3														2
The Zia Company																	
Employees Visitors	1082	264	23	15	4	5	1										31
Total	1082	264	23	15	4	5	1										31
University of California																	
Employees	2719	1246	221	127	79	44	77	9	4								
Visitors	944	328	80	8	2	1	2										388 39
Total	3663	1574	301	135	81	45	79	9	4								427
TOTAL ALBUQUERQUE	12214	15237	918	433	228	126	174	24	8								1687

Contractor	$<$ Meas.	$\begin{aligned} & \text { Meas.- } \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.10- \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.25- \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.50- \\ & 0.75 \end{aligned}$	$\begin{aligned} & 0.75- \\ & 1.00 \end{aligned}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	>10	Total Person-rem
Ames Laboratory																	
Employees	75	31	6	5	5	4	9	1									27
Visitors	124	14															1
Total	199	45	6	5	5	4	9	1									28
Argonne National Lab.																	
Employees	2239	439	176	104	69	34	13	3									192
Visitors	3703	79	24	2													9
Total	5942	518	200	106	69	34	13	3									201
Brookhaven National Lab.																	
Employees	183	1281	267	105	59	29	39	9	2								300
Visitors	88	279	80	15	3	4	2	2									47
Total	271	1560	347	120	62	33	41	11	2								347
Chicago Misc.																	
Employees	308	310	74	16	4	3	9	10	3								89
Visitors	296	45															2
Total	604	355	75	16	4	3	9	10	3								91
Fermi National Accel.																	
Employees	1185	648	152	61	22	15	21	1									143
Visitors	2189	482	56	16	3												42
Total	3374	1130	208	77	25	15	21	1									185

DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR
CHICAGO FIELD ORGANIZATION
1980

ع`g $378 \forall 1$
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR
GRAND JUNCTION FIELD ORGANIZATION
1980

distribution of annual whole body
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR
IDAHO FIELD ORGANIZATION
1980

$\boldsymbol{\omega} \boldsymbol{\omega}$
$\stackrel{\text { 잇 }}{\wedge}$
잏
が
$\stackrel{\infty}{\stackrel{p}{1}}$
6

4
$\pm \mid$

$\begin{array}{ll}1 & n \\ \substack{n \\ 0 \\ 0} & 0\end{array}$
$\stackrel{1}{ } \mid$

m
$\underset{\sim}{N}$
Dose Equivalent Ranges
 $-$

d	n
0	

-

¢

Contractor
Contractor
Arrington Const.
Employees
Visitors
Total
Biggers Const

C-L Electric Company
Employees
Visitors
Total
EG\&G, Idaho, Inc.
Employees
Visitors
Total

$$
\stackrel{\otimes}{\wedge} \mid
$$

$$
\hat{\oplus} \mid
$$

$$
\dot{0} \mid
$$

$$
\mathfrak{q} \mid
$$

$$
\dot{m} \mid
$$

$$
\begin{aligned}
& \text { D ORGANIZATION } \\
& 1980
\end{aligned}
$$

$$
\begin{array}{ll}
\tilde{y} & \tilde{y} \\
\mathbb{\infty} & \mathbb{\infty}
\end{array}
$$

Contractor
Exxon Nuclear Co.
Employees
Visitors
Total
Idaho Miscellaneous
Employees
Visitors
Total
Jones-Boecon
Employees
Visitors
Total
Lehigh Design Co.
Employees
Visitors
Total
Morrison-Knudsen
Employees
Visitors.
Total

（pənu！u⿺辶）t゚g $378 \forall 1$
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR
IDAHO FIELD ORGANIZATION
1980

TABLE B. 5
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR
NEVADA FIELD ORGANIZATION
1980

 Contractor
Air Resources Lab. Employees Employees
Visitors

Total

CER Geonuclear
Employees
Visitors
Total
Defense Nuclear Agency
Employees
Visitors
Total
Eberline Instrument
Employees
Visitors
Total
EG\&G, Inc.
Employees
Visitors
Visitors
Total
B. 10
TABLE B． 5 （Continued）
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR
NEVADA FIELD ORGANIZATION
1980
TABLE B． 5 （Continued）
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR
NEVADA FIELD ORGANIZATION
1980

Total
Person－rem

$\stackrel{ }{ }$
잉
∞
∞
∞

∞

6｜
6
$\dot{\circ}$
n
\vdots
\vdots
+1
m
Dose Equivalent Ranges（rem）

$\begin{array}{cc}\dot{n} & \\ \dot{\sim} & 0 \\ \dot{\sim} & 0\end{array}$
$V \underset{\underset{\sim}{\dot{\omega}}}{\dot{\sim}} \mid$
N
2 2－
\boldsymbol{r}
$\underset{\sim}{2}$
Contractor
Environmental Protec．
Holmes \＆Narver，Inc．
Employees
Total
Nevada Misc．
Employees
Visitors
Reynolds Electrical
Employees
Visitors
Total
旁芳荡
Environmental Protec．
Employees
Visitors
Total
Fenix \＆Scisson，Inc．
Employees
Visitors
Total
Holmes \＆Narver，Inc．
Employees
Visitors
Total
Nevada Misc．
Employees
Visitors
Total
Reynolds Electrical
Employees
Visitors
Total
TABLE B. 5
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR
NEVADA FIELD ORGANIZATION
1980

Contractor	$\underset{\text { Meas. }}{<}$	$\begin{gathered} \text { Meas.- } \\ 0.10 \end{gathered}$	$\begin{aligned} & 0.10- \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.25- \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.50- \\ & 0.75 \end{aligned}$	$\begin{aligned} & 0.75- \\ & 1.00 \end{aligned}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	>10	Total Person-rem
U.S. Department of Interior																	
Employees	100	6	1														
Visitors	20	1															1
Total	120	7	1														
Wackenhut Services																	
Employees	258	1	1														
Visitors	32																
Total	290	1	1														
Westinghouse Electric																	
Employees	123	4	1														
Visitors	81																
Total	204	4	1														
TOTAL NEVADA	15717	388	45	8	1												31

TABLE B． 6
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR
OAK RIDGE FIELD ORGANIZATION
1980

高镸\|	－－	$\bar{\square}$	5	\％	끙		\％	$\wedge \infty$
잇								
$\stackrel{\circ}{\square}$								
$\dot{\oplus} \mid$								
$\stackrel{\sim}{\sim}$								
¢								
¢ ${ }^{1}$								
¢								
m ${ }^{\text {｜}}$								
$\underset{\sim}{\sim}$								
$\stackrel{\text { r｜}}{ }$		－	－	∞	∞			
مٌ		\checkmark	＋	\cong	\cong			
骨迵		$\%$	$\%$	＊	～			
突 ${ }_{0}^{0} \mathrm{O}$		N	N	$?$	\bigcirc	\sim	\sim	in in
		욱	육	$\stackrel{\infty}{\square}$	$\stackrel{\otimes}{\square}$	ส	＊	\bigcirc 2
	F^{N}	\％	\％	®	\％	F	E	テの～～～
$\checkmark \stackrel{\stackrel{\iota}{\dot{¢}}}{\stackrel{\circ}{\mathrm{E}}}$	ざ セ～	\％	\＆	$\stackrel{\text { ® }}{\sim}$	$\stackrel{\square}{\square}$	8	\％	

Contractor	$<$ Meas.	Meas.- 0.10	$\begin{aligned} & 0.10- \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.25- \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.50- \\ & 0.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75- \\ & 1.00 \\ & \hline \end{aligned}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	>10	Total Person-rem
Union Carbide Corp./Paducah																	
Employees Visitors	102	292	56	6													27
Total	102	292	56	6													27
Woven Structures, Inc.																	
Employees Visitors		3		13	7	2	2										14
Total		3		13	7	2	2										14
TOTAL OAK RIDGE	1578	2986	745	303	105	52	48	10	1								605

TABLE B. 8
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR
$\underset{1980}{ }$

TABLE B. 8 (Continued) distinuino or annuat whotr body extosuris

Rockwell International
Energy Systems Group
Employees
Visitors
Total
Stanford Linear Accel. Ctr.
Employees
Visitors
Total
University of California/LBL
Employees
Visitors
Total
University of California/LLL
Employees
Visitors
Total
University of California/LEHR
Employees
Visitors
Total
TABLE B. 9 (Continued)
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR
SAN FRANCISCO FIELD ORGANIZATION
1980

Dose Equivalent Ranges (rem)																	
Contractor	Meas.	Meas.- 0.10	$\begin{aligned} & 0.10- \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.25- \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.50- \\ & 0.75 \end{aligned}$	$\begin{aligned} & 0.75- \\ & 1.00 \end{aligned}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	>10	Total Person-rem
University of California/LNM																	
Employees	114	5	3	1	1	2	1										5
Visitors																	
Total	114	5	3	1	1	2	1										5
University of California/MC																	
Employees	25																
Visitors																	
Total	25																
University of California/NTS																	
Employees	83	8	3	1	1												2
Visitors	993	77	5														5
Total	1076	85	8	1	1												7
TOTAL SAN FRANCISCO	27614	2752	200	51	19	11	13	3									240

TABLE B. 11
DISTRIBUTION OF ANNUAL WHOLE BODY
SCHENECTADY NAVAL REACTORS
1980

APPENDIX C

DISTRIBUTION OF ANNUAL WHOLE-BODY EXPOSURES FOR DOE GOVERNMENT EMPLOYEES AND VISITORS BY DOE FIELD ORGANIZATION, 1980

TABLE C. 1 (Continued) DISTRIBUTION OF ANNUAL WHOLE-BODY EXPOSURES FOR DOE GOVERNMENT EMPLOYEES AND VISITORS
 BY DOE FIELD ORGANIZATION

Dose Equivalent Ranges (rem)																	
Organization	Meas.	$\begin{gathered} \text { Meas.- } \\ 0.10 \\ \hline \end{gathered}$	$\begin{aligned} & 0.10- \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.25- \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.50- \\ & 0.75 \end{aligned}$	$\begin{aligned} & 0.75- \\ & 1.00 \end{aligned}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	≥ 10	Total Person-rem
Idaho Operations	142	82	5														5
TOTAL	142	82	5														5
Nevada Operations	5508	210	35	7													19
TOTAL	5508	210	35	7													19
Pittsburgh Naval Reactors	9	41	2														2
TOTAL	9	41	2														2
Richland Operations	144	73	9	2													6
TOTAL	144	73	9	2													6
San Francisco Operations	61	1															
TOTAL	61	1															

C. 2

C. 3

[^0]: (a)These previously unreported individuals exceeded 50% of the annual standard during 1980 as a result of chronic buildup due to translocation from the lungs from prior years' exposure. No acute exposure is known to have occurred.
 (b) One individual exceeded 100% of the annual standard in 1980 for unknown reasons. This individual received a Type B plutonium lung exposure as a result of an incident in 1971, and has been excluded from work with plutonium since that time. Since the systemic burden was less than half the standard in 1978, this new information was also reported. This individual's case is being closely followed to see if some mechanism for the increase in systemic burden can be determined.

[^1]: TOTAL PERSON-REM

