

Twelfth Annual Report Radiation Exposure For DOE and DOE Contractor Employees-1979

Published: February 1982

Prepared for:
U.S. Department of Energy

Assistant Secretary for Environmental
Protection, Safety, and Emergency Preparedness
Office of Nuclear Safety

This report has been reproduced directly from the best available copy.
Available from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

Price: Printed Copy A04

Microfiche A01

Abstract

Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issues of the following publications, which are generally available in most libraries: Energy Research Abstracts, (ERA); Government Reports Announcements and Index (GRA and I); Scientific and Technical Abstract Reports (STAR); and publication, NTIS-PR-360 available from (NTIS) at the above address.

Twelfth Annual Report Radiation Exposure For DOE and DOE Contractor Employees-1979

Prepared by:
Pacific Northwest Laboratory
Richland, Washington 99352
Under Contract No. DE-ACO6-76RL01 830

Prepared for:
U.S. Department of Energy

Assistant Secretary for Environmental
Protection, Safety, and Emergency Preparedness
Office of Nuclear Safety
Washington, DC 20545

TWELFTH ANNUAL REPORT RADIATION EXPOSURES FOR DOE AND DOE CONTRACTOR EMPLOYEES 1979

PREFACE

This report is one of a series of annual reports provided by the U.S. Department of Energy (DOE) summarizing occupational radiation exposures received by DOE and DOE contractor employees. These reports provide an overview of radiation exposures received each year as well as identification of trends in exposures being experienced over the years.

In 1968, the U.S. Atomic Energy Commission (AEC) established a program for reporting certain occupational radiation exposure information to a central radiation records repository. At the same time, a contract was made with Union Carbide Corporation at Oak Ridge, Tennessee, to computerize the processing of the radiation exposure reporting system. Annual summary reports were published from 1969 through 1973 (WASH-1350-R1 through WASH-1350-R6), and included information on AEC contractor employees and visitors, as well as employees and visitors of companies in the private sector licensed by the AEC.

In January 1975, with the separation of the AEC into the Energy Research and Development Agency (ERDA) and the U.S. Nuclear Regulatory Commission (NRC), each agency assumed responsibility for collecting and maintaining occupational exposure information reported by the facilities under its jurisdiction. Former AEC licensees reported to the NRC while contractors reported to ERDA. At the same time, a contract was made with Union Carbide Corporation at Oak Ridge, Tennessee, to computerize the reporting and processing of both the ERDA and NRC radiation exposure reporting systems. On October 1, 1977, DOE was formed and assumed the responsibilities of ERDA. Processing and programming of exposure information continued at Oak Ridge until October 1978, when the management and further development of the DOE radiation exposure reporting system was assigned to the System Safety Development Center, EG\&G Idaho, Inc.; the NRC system remained at Oak Ridge.

Radiation exposure data for ERDA and ERDA contractor employees and visitors for 1974 through 1976 were reported in ERDA 76/119, ERDA 77-29, and DOE/EV-0011/9. The DOE and DOE contractor radiation exposure data for 1977, 1978, and 1979 were presented in DOE/EVO-0066/10, 11, and 12 respectively. This report is a revision of the 1979 document.

Previous reports for AEC/ERDA/DOE, government and contractor employees and visitors may be obtained from the U.S. DOE Technical Information Center, P.O. Box 62, Oak Ridge, TN 37830.

SUMMARY

All Department of Energy (DOE) and DOE contractors are required by DOE Order 5484.1, Chapter IV to submit occupational exposure records to a central repository. The data required include a summary of whole-body exposure to ionizing radiation, a summary of internal depositions of radioactive materials above specified limits, and occupational exposure reports for terminating employees. This report is a summary of the data submitted by DOE and DOE contractors for 1979 and is a revision of the previously published report.

A total of 104,986 DOE and DOE contractor employees were monitored for whole-body ionizing radiation exposure in 1979. This represents 81% of all DOE and DOE contractor employees and is a 3% increase over the number of individuals monitored in 1978. In addition to the employees, 89,585 visitors were also monitored.

Of all employees monitored, 47.6% received a dose equivalent that was less than measurable, 50.8% a measurable exposure less than 1 rem , and 1.6% an exposure greater than 1 rem . The exposure received by 89.1% of the visitors to DOE facilities was less than measurable. Only 10.8% of the visitors received a measurable exposure less than 1 rem , and 0.1% of the visitors received an exposure greater than 1 rem. Three DOE contractor employees at three separate facilities received whole-body dose equivalents greater than 5 rem during 1979.

The collective dose equivalent for the DOE and DOE contractor employees was 9,043 person-rem. The collective dose equivalent for visitors was 622 person-rem. The total dose equivalent for employees and visitors combined was 9,665 person-rem. The average dose equivalent for all individuals (employees and visitors) monitored was 50 mrem and the average dose equivalent for all individuals who received a measurable exposure was 150 mrem. The highest average dose equivalent was observed for employees monitored at fuel processing facilities (324 mrem) and the lowest among visitors (7 mrem) to DOE facilities. These averages are significantly less than the DOE 5-rem/year radiation protection standard for whole-body exposures.

Two reported cases of internal depositions were reported in 1979. In both cases, the depositions were less than the annual dose-equivalent standard. Internal depositions were the result of accidental, not planned, exposures.

A total of 9,868 monitored employees terminated their employment in 1979. The average cumulative dose equivalent for terminated employees who worked one to two years was 0.29 rem; three to four years, 0.40 rem; five to six years, 0.68 rem ; and longer than six years, 2.39 rem. The average cumulative dose equivalent for employees who terminated with more than six years of employment appears high in comparison with the other data. However, this average includes the cumulative exposure of individuals who worked for DOE or DOE contractors for over 20 years.
.

CONTENTS

PREFACE iii
SUMMARY v
INTRODUCTION 1
SUMMARY OF WHOLE-BODY IONIZING RADIATION EXPOSURES 2
DISTRIBUTION BY DOSE INTERVAL 3
DISTRIBUTION BY FACILITY TYPE 9
DISTRIBUTION BY FIELD ORGANIZATION 11
SUMMARY OF INTERNAL EXPOSURES 14
SUMMARY OF WORKER TERMINATIONS 15
APPENDIX A—DISTRIBUTION OF ANNUAL WHOLE-BODY EXPOSURES BY FACILITY TYPE FOR EACH DOE FIELD ORGANIZATION, 1979 A. 1
APPENDIX B-DISTRIBUTION OF ANNUAL WHOLE-BODY EXPOSURES BY CONTRACTOR FOR EACH DOE FIELD ORGANIZATION, 1979 B. 1
APPENDIX C—DISTRIBUTION OF ANNUAL WHOLE-BODY EXPOSURES FOR DOE GOVERNMENT EMPLOYEES AND VISITORS BY DOE FIELD ORGANIZATION, 1979 C. 1

FIGURES

1 Comparison of Number of Employees, Number of Employees Monitored, and Number of Employees Monitored Who Received No Measurable Dose Equivalent 4
2 Percent of Monitored Employees and Percent of Monitored Visitors Who Received an Exposure Less Than Measurable, Less Than 1 rem, or Greater Than 1 rem 5
3 Contribution of Each Dose Equivalent Interval to the Total Collective Dose Equivalent, 1979 6
4 Total Collective Dose Equivalent for all DOE/DOE Contractor Employees Who Received an Exposure Greater Than 1 rem 8
5 Contribution of Each Facility Type to the Total Collective Dose Equivalent 9
TABLES
1 Radiation Protection Standards for External and Internal Dose Equivalents for Individuals in Controlled Areas 1
2 Distribution of Whole Body Ionizing Radiation Exposures for DOE/DOE Contractor Employees and Visitors by Dose-Equivalent Interval 3
3 Distribution of Whole Body Ionizing Radiation Exposures for DOE/DOE Contractor Employees, 1965-1979 7
4 Distribution of Annual Whole Body Exposures for DOE/DOE Contractor Employees and Visitors by Facility Type, 1979 10
5 Collective Dose Equivalent by Facility Type for DOE/DOE Contractor Employees and Visitors, 1979 11
6 Collective Dose Equivalent for DOE/DOE Contractor Employees and Visitors by Field Organization, 1979 12
7 Fraction of Collective Dose Equivalent for DOE/DOE Contractor Employees and Visitors Attributed to a Facility Type Within Each Field Organization, 1979 13
8 Collective Dose Equivalent for DOE/DOE Contractor Employees and Visitors by Field Organization, 1974-1979 14
9 Dose Distributions for Cases of Internal Body Depositions, 1977-1979 15
Average Cumulative Dose Equivalent for Individuals Terminating in 1979 15
A. 1 Distribution of Annual Whole-Body Exposures by Facility Type- Albuquerque Field Organization, 1979 A. 1
A. 2 Distribution of Annual Whole-Body Exposures by Facility Type- Chicago Field Organization, 1979 A. 2
A. 3 Distribution of Annual Whole-Body Exposures by Facility Type- Grand Junction Field Organization, 1979 A. 3
A. 4 Distribution of Annual Whole-Body Exposures by Facility Type- Idaho Field Organization, 1979 A. 4
A. 5 Distribution of Annual Whole-Body Exposures by Facility Type- Nevada Field Organization, 1979 A. 5
A. 6 Distribution of Annual Whole-Body Exposures by Facility Type- Oak Ridge Field Organization, 1979 A. 6
A. 7 Distribution of Annual Whole-Body Exposures by Facility Type- Pittsburgh Naval Reactor Field Organization, 1979 A. 7
A. 8 Distribution of Annual Whole-Body Exposures by Facility Type- Richland Field Organization, 1979 A. 8
A. 9 Distribution of Annual Whole-Body Exposures by Facility Type- San Francisco Field Organization, 1979 A. 9
A. 10 Distribution of Annual Whole-Body Exposures by Facility Type- Savannah River Field Organization, 1979 A. 10
A. 11 Distribution of Annual Whole-Body Exposures by Facility Type- Schenectady Naval Reactor Field Organization, 1979 A. 11
B. 1 Distribution of Annual Whole-Body Exposures by Contractor- Albuquerque Field Organization, 1979 B. 1
B. 2 Distribution of Annual Whole-Body Exposures by Contractor- Chicago Field Organization, 1979 B. 4
B. 3 Distribution of Annual Whole-Body Exposures by Contractor- Grand Junction Field Organization, 1979 B. 6
B. 4 . Distribution of Annual Whole-Body Exposures by Contractor- Idaho Field Organization, 1979 B. 7
B. 5 Distribution of Annual Whole-Body Exposures by Contractor- Nevada Field Organization, 1979 B. 10
B. 6 Distribution of Annual Whole-Body Exposures by Contractor- Oak Ridge Field Organization, 1979 B. 13
B. 7 Distribution of Annual Whole-Body Exposures by Contractor- Pittsburgh Naval Reactor Field Organization, 1979 B. 16
B. 8 Distribution of Annual Whole-Body Exposures by Contractor- Richland Field Organization, 1979 B. 17
B. 9 Distribution of Annual Whole-Body Exposures by Contractor- San Francisco Field Organization, 1979 B. 19
B. 10 Distribution of Annual Whole-Body Exposures by Contractor- Savannah River Field Organization, 1979 B. 21
B. 11 Distribution of Annual Whole-Body Exposures by Contractor- Schenectady Naval Reactor Field Organization, 1979 B. 22
C. 1 Distribution of Annual Whole-Body Exposures for DOE Government Employees and Visitors by DOE Field Organization, 1979 C. 1

TWELFTH ANNUAL REPORT RADIATION EXPOSURES FOR DOE AND DOE CONTRACTOR EMPLOYEES 1979

INTRODUCTION

One of the basic Department of Energy (DOE) radiation protection policy objectives is that radiation exposures be maintained as low as is reasonably achievable (ALARA) and within the occupational exposure guidelines provided in DOE Order 5480.1, Chapter XI (Table 1). Assurance that occupational exposures do not exceed the guidelines is not considered, in itself, sufficient. All operations are to be conducted "in a manner to assure that radiation exposures to individuals and population groups are limited to the lowest levels technically and economically feasible."

TABLE 1. Radiation Protection Standards for External and Internal Dose Equivalents for Individuals in Controlled Areas

Type of Exposure	Exposure Period	Dose Equivalent (Dose or Dose Commitment)(rem)(a)
Whole body, head and trunk, gonads, lens of the eye,(b) red bone marrow, active blood forming organs.	Year Calendar quarter	$\begin{aligned} & 5(\mathrm{c}) \\ & 3^{3} \end{aligned}$
Unlimited areas of the skin (except hands and forearms), other organs, tissues, and organ systems (except bone).	Year Calendar quarter	$\begin{array}{r} 15 \\ 5 \end{array}$
Bone	Year Calendar quarter	$\begin{aligned} & 30 \\ & 10 \end{aligned}$
Forearms(d)	Year Calendar quarter	$\begin{aligned} & 30 \\ & 10 \end{aligned}$
Hands(d) and feet	Year Calendar quarter	$\begin{aligned} & 75 \\ & 25 \end{aligned}$

[^0]To assist in the determination that exposures to individuals are maintained at the lowest level practicable, DOE requires the submittal of occupational radiation exposure records to a central repository. The data required includes a summary of whole-body exposure to ionizing radiation, a summary of internal depositions of radioactive materials, and occupational exposure reports for terminating employees. The central data base also includes occupational radiation exposure information for the Atomic Energy Commission (AEC) and the Energy Research and Development Agency (ERDA).

The DOE Office of Operational Safety initiated a study during FY-80 to review the status of the Radiation Records Repository. As part of that study, this revision of the Twelfth Annual Report of Radiation Exposures for DOE and DOE Contractor Employees was prepared. This report is a summary of the data submitted in 1979 by DOE and DOE contractor offices. For the purpose of trend analysis, the data is compared to that reported in previous years. The data used to prepare this report is presented in Appendix A, "Distribution of Whole Body Exposures by Facility Type for Each DOE Field Organization, 1979"; Appendix B, "Distribution of Annual Whole Body Exposures by Contractor for Each DOE Field Organization, 1979"; and Appendix C, "Distribution of Annual Whole Body Exposures for DOE Government Employees and Visitors by DOE Field Organization, 1979."

SUMMARY OF WHOLE-BODY IONIZING RADIATION EXPOSURES

Monitoring is required by DOE Order 5480.1, Chapter XI, where the potential exists for an individual to receive a dose or dose commitment in any calendar quarter in excess of the 10% of the quarterly or annual occupational exposure guidelines shown in Table 1. Depending on the administrative policy of the contractor, monitoring may also be provided to individuals, such as clerical workers, for whom the exposure potential is extremely low.

The number of individuals who received an occupational whole-body exposure in one of 18 doseequivalent intervals ranging from "less than measurable" to "greater than 10 rem" is provided annually by each DOE contractor and DOE office. A positive, measurable exposure is any recorded exposure greater than the minimum sensitivity of a personnel monitoring device. The data is further subdivided into one of 10 facility types.

Contractors have the option of reporting the distribution of whole body-occupational dose equivalents only for those individuals for whom monitoring is required, or for all those for whom monitoring is provided. Many contractors choose to report the latter, thus increasing the number of individuals who are considered to be radiation workers. To account for this effect, the average dose equivalent per individual receiving a measurable exposure is calculated as well as the average dose equivalent per individual monitored.

The annual collective dose equivalent is calculated by multiplying the number of individuals in each dose range by the midpoint of the range, and then summing the products. This procedure allows an estimate of the collective dose equivalent to be calculated without knowledge of each individual's annual dose. However, a source of error is introduced to the calculation by the assumption that the midpoint of the dose-equivalent range is the mean dose equivalent of the individuals reported in each dose-equivalent range. Frequently, the actual mean dose equivalent in each range is less than the assumed arithmetic mean. Thus, collective dose equivalents presented in this report may be slightly higher than the actual collective dose equivalents.

DISTRIBUTION BY DOSE INTERVAL

The number of employees and visitors who received a dose equivalent in each of 18 dose-equivalent intervals is presented in Table 2. A total of 104,986 DOE and DOE contractor employees were monitored for whole body ionizing radiation exposure in 1979. This represents 81% of all DOE and DOE contractor employees. In addition to the employees, 89,585 visitors were also monitored. Visitors may include radiation workers employed by a DOE contractor present on an interim basis at another DOE facility.

TABLE 2. Distribution of Whole Body Ionizing Radiation Exposures for DOE/DOE Contractor Employees and Visitors by Dose-Equivalent Interval

Dose Equivalent Interval (rem)	Number of Persons			Collective Person-rem		
	Employees	Visitors	Total	Employees	Visitors	Total
<Measurable	50,003	79,841	129,844	0	0	0
Measurable to 0.10	42,266	9,333	51,599	2,113	467	2,580
0.10 to 0.25	5,630	243	5,873	985	43	1,028
0.25 to 0.50	3,011	83	3,094	1,129	31	1,160
0.50 to 0.75	1,512	46	1,558	946	28	974
0.75 to 1.00	816	13	829	714	11	725
1 to 2	1,286	23	1,309	1,929	34	1,963
2 to 3	416	3	419	1,040	8	1,048
3 to 4	33	0	33	115	0	115
4 to 5	10	0	10	45	0	45
5 to 6	1	0	1	5	0	5
6 to 7	0	0	0	0	0	0
7 to 8	0	0	0	0	0	0
8 to 9	0	0	0	0	0	0
9 to 10	1	0	1	9	0	9
>10	1	0	1	13	0	13
TOTAL	104,986	89,585	194,571	9,043	622	9,665

A comparison of the number of DOE and DOE contractor employees, the number of employees monitored and the number of employees monitored who did not receive a measurable dose equivalent for the past five years is presented in Figure 1. A gradual increase in the total number of employees can be observed. However, the number of employees monitored who did not receive a measurable dose equivalent has remained relatively constant until 1979, when this number increased slightly.

Of all employees monitored in 1979, 47.6\% received a dose equivalent that was less than measurable, 50.8% a measurable exposure less than 1 rem, and 1.6% an exposure greater than 1 rem (Figure 2). The exposure received by 89.1% of the visitors to DOE facilities was less than measurable. Only 10.8% of the visitors received an exposure between measurable and 1 rem , and 0.1% of the visitors received an exposure greater than 1 rem (Figure 2). Three DOE contractor employees at three separate facilities received whole-body dose equivalents greater than 5 rem during 1979.

FIGURE 2. Percent of Monitored Employees and Percent of Monitored Visitors Who Received an Exposure Less than Measurable, Less Than 1 rem, or Greater Than 1 rem

The collective dose equivalent was 9,403 person-rem for all DOE and DOE contractor employees, and 622 person-rem for visitors to DOE facilities, for a total collective dose equivalent of 9,665 person-rem. The contribution of the individuals in each dose-equivalent interval to the collective dose equivalent is shown in Figure 3. Individuals whose exposure was less than 1 rem contributed the greatest portion of the total person-rem.

The distribution of whole-body exposures for the years 1965-1979 is presented in Table 3. As can be observed in Table 3, the number of employees who received a dose equivalent greater than 1 rem has gradually declined since 1965. This same downward trend is shown in Figure 4, which shows the collective dose equivalent for all individuals from 1965-1979 who received an exposure greater than 1 rem. The collective dose equivalent for individuals who received an exposure less than 1 rem was not included because prior to 1974, a less-than-measurable exposure was not distinguished from measurable exposures in the reporting system. This decrease in the collective dose equivalent has been achieved even though some work was performed in older facilities which were not constructed using current design criteria. These trends reflect both changes in the nature of the work performed at DOE facilities and the consistent application of ALARA practices throughout all DOE operations.

FIGURE 3. Contribution of Each Dose-Equivalent Interval to the Total Collective Dose Equivalent, 1979
TABLE 3. Distribution of Whole-Body Ionizing Radiation Exposures for DOE/DOE Contractor Employees, 1965-1979

[^1]

FIGURE 4. Total Collective Dose Equivalent for All DOE/DOE Contractor Employees Who Received an Exposure Greater Than 1 rem

DISTRIBUTION BY FACILITY TYPE

The number of individuals and the distribution of the annual whole-body exposures in each of 11 facility categories was reported to the central repository. For the purpose of this report, visitors were considered a facility type. The contribution of each facility type to the collective dose equivalent is shown in Figure 5. The largest percentage of the total collective dose equivalent was in the category "Other." Examples of facilities included in the "Other" category include construction and radioactive waste handling. "General Research" was a close second. As would be expected, the"smallest contribution was from DOE offices. A summary of the data submitted is presented in Table 4.

FIGURE 5. Contribution of Each Facility Type to the Total Collective Dose Equivalent

The average dose equivalent by facility type, per individual monitored, and per individual monitored with measurable exposure, is shown in Table 5 . The average dose equivalent per individual monitored for all facilities combined was 50 mrem. The highest average dose equivalent per individual monitored was observed at fuel processing facilities (324 mrem) and the lowest was observed for visitors to DOE facilities (7 mrem).

TABLE 5. Collective Dose Equivalent for DOE/DOE Contractor Employees and Visitors by Facility Type, 1979

Facility Type	No. Individuals Monitored	No. Individuals With Measurable Exposure	Total No. Person-rem	Average Dose Equivalent (mrem) Per Individual Monitored	Average Dose Equivalent (mrem) Per Individual Monitored With Measurable Exposures
Reactor	6,995	4,368	1,389	199	318
Fuel Fab.	1,095	+948	278	253	293
Fuel Proc.	3,730	2,611	1,209	324	463
Uran. Enrich.	11,144	8,680	466	42	54
Weapon F\&T	18,409	10,827	1,247	68	115
Gen. Research	41,711	13,554	1,845	44	136
Accelerator	3,402	1,615	492	145	305
Other	16,180	11,720	2,074	128	177
Visitors	89,585	9,744	622	7	64
DOE Offices	2,320	660	43	18	65
TOTAL	194,571	64,727	9,665	50	149

DISTRIBUTION BY FIELD ORGANIZATION

For each field organization the number of employees monitored and the collective dose equivalent are shown in Table 6. Differences in the collective dose equivalent at each field organization reflect differences in the nature of the work performed and the administrative policy concerning whether the dose distribution is reported for all employees or only those for whom monitoring is required. Table 7 provides an indication of the work done at each field organization by showing the fraction of the collective dose equivalent at each field organization which is attributed to each facility type.

Trends in collective dose equivalents from 1974 to 1979 can be observed in Table 8 for each field organization.
TABLE 6. Collective Dose Equivalent for DOE/DOE Contractor Employees and Visitors by Field Organization, 1979

Field Organization	No. Individuals Monitored	No. Individuals With Measurable Exposure	Collective Dose Equivalent (Person-rem)	Average Dose Equivalent (mrem) Per Individual Monitored	Average Dose Equivalent (mrem) Per Individual Monitored With Measurable Exposures
Albuquerque	30,110	17,250	1,873	62	109
Chicago	20,101	5,078	1,061	53	209
Grand Junction	157	47	8	51	170
Idaho	41,256	2,552	876	21	343
Nevada	19,094	256	31	2	0.121
Oak Ridge	27,584	18,481	1,332	48	72
Pittsburgh Naval Reactor	2,596	2,091	196	76	93
Richland	9,729	8,807	2,571	264	292
San Francisco	30,271	2,593	264	9	102
Schenectady Naval Reactor	2,565	1,596	114	44	71
Savannah River	11,108	5,976	1,343	121	225
total	194,571	64,727	9,669	50	150

TABLE 7. Fraction of Collective Dose Equivalent for DOE/DOE Contractor Employees and Visitors Attributed
Facility Type

Field Organization	Facility Type									
	$\underline{\text { Reactor }}$	Fuel Fab.	Fuel Proc.	Uran. Enrich.	Weapon F\&T	Gen. Research	Acceler.	Other	Visitor	DOE Office
Albuquerque					0.524	0.273	0.001	0.191	0.012	
Chicago	0.056				0.307	0.456	0.055	0.126		
Grand Junction								1.00		
Idaho	0.293		0.697							0.010
Nevada					0.774				0.226	
Oak Ridge		0.072		0.350	0.158	0.228		0.173	0.017	0.001
Pittsburgh Naval Reactor	0.311					0.648		0.010	0.020	0.010
Richland	0.296	0.020				0.115		0.541	0.026	0.002
San Francisco					0.004	0.602	0.030	0.326	0.038	
Schenectady Naval Reactor	0.623					0.316		0.009	0.044	0.00
Savannah River	0.134	0.098	0.447		0.023	0.065		0.221	0.010	0.002
ALL FIELD ORGANIZATIONS COMBINED	0.144	0.029	0.125	0.048	0.129	0.191	0.051	0.215	0.064	0.004

TABLE 8. Collective Dose Equivalent for DOE/DOE Contractor Employees and Visitors by Field Organization, 1974-1979(a)

Field Organization	1974	1975	1976	1977	1978	1979
Albuquerque	2,405	2,324	1,437	2,300	2,399	1,873
Chicago	1,943	1,638	1,354	1,373	1,167	1,061
Grand Junction	0	5	<1	<1	2	8
Idaho	686	611	790	929	899	876
Nevada	58	55	25	49	47	31
Oak Ridge	1,178	1,284	1,351	1,300	1,566	1,332
Pittsburgh Naval Reactor	587	1,876	1,609	653	252	196
Richland	2,079	2,257	2,265	3,197	2,596	2,571
San Francisco	320	283	285	334	307	264
Schenectady Naval Reactor	261	1,022	203	148	111	114
Savannah River	1,434	1,268	1,278	1,298	1,289	1,343
TOTAL	10,951	12,622	10,597	11,581	10,635	9,669

(a)Throughout this report, minor variations in collective dose-equivalent values may occur due to computer rounding.

SUMMARY OF INTERNAL EXPOSURES

Internal body depositions of radioactive material result from accidental, not planned, exposures. A report of internal body deposition of radioactive materials is required when:

1. any uptake of radioactive material occurred during the reporting year that either independently or when added to a current burden was estimated to result in a dose commitment to the critical organ in excess of 50% of the pertinent annual dose equivalent standard set forth in DOE Order 5484.1, Chapter XI; or when
2. any previously unreported uptake of radioactive material was determined to have been reportable according to the above criteria by reason of the most recent dose-equivalent estimates.

Table 9 gives a three-year comparison of new cases of internal body depositions. Only those cases occurring within each year are included. Cases where the effects of prior years' depositions are continuing or where a new uptake is not clearly identified are not included.

TABLE 9. Dose Distributions for Cases of Internal Body Depositions, 1977-1979

Year	Radionuclide	Critical Organ	Dose Equivalent Interval (rem)					
			7.5-10	10-15	15-25	25-50	50-100	100-200
1977	${ }^{238} \mathrm{Pu}$	Lung	1		1	1		
1978	$\begin{aligned} & { }^{239 P \mathrm{Pu},{ }^{240} \mathrm{Pu},{ }^{241} \mathrm{Pu}} \\ & { }^{255} \end{aligned}$	Lung Thyroid	$\begin{aligned} & 1 \\ & 1 \end{aligned}$					
1979	${ }^{234} \mathrm{U},{ }^{235} \mathrm{U},{ }^{238} \mathrm{U}$	Lung	2					

Of 16 reported body deposition cases for 1979, two are considered new and are included in Table 9. The 14 remaining cases are not included for the following reasons: in five cases, the current burden has decreased from the measured level of previous years. These instances are judged as continued tracking of a previous uptake. In eight other cases, the reported current burden was slightly higher than was previously measured, indicating either a re-evaluation of the burden, or a possible new uptake. In one final case, a 1979 dose commitment of 33.75 rem to the bone was noted to be a translocation of a reported 1977 lung deposition.

SUMMARY OF WORKER TERMINATIONS

There were 8,968 monitored workers in 1979 who terminated their employment with DOE or DOE contractors. Table 10 gives the length of employment as well as the average cumulative dose equivalent for the workers in each time interval. These data indicate that the average cumulative dose equivalent for workers terminating in 1979 after 1 to 365 days of employment was significantly less than the 5 rem-per-year radiation protection standard for the whole body.

The average cumulative dose equivalent for workers who terminated after more than six years of employment was 2.39 rem. This average appears high in comparison with the average cumulative dose equivalent for employees who terminated with less than six years of employment. However, this average includes the cumulative exposure of individuals who worked for DOE or DOE contractors for more than 20 years.

TABLE 10. Average Cumulative Dose Equivalent for Individuals Terminating in 1979

Length of Employment	Number of Terminated Employees	Total Cumulative Dose Equivalent (Person-rem)	Average Cumulative Dose Equivalent Per Terminated Employee (rem)
1-90 days	2,229	1,066	0.48
90-180 days	1,003	222	0.22
180-365 days	970	180	0.19
1-2 years	1,240	364	0.29
3-4 years	1,019	404	0.40
5-6 years	490	332	0.68
>6 years	2,017	4,829	2.39

APPENDIX A

DISTRIBUTION OF ANNUAL WHOLE-BODY EXPOSURES BY FACILITY TYPE FOR EACH DOE FIELD ORGANIZATION, 1979

TABLE A. 3
DISTRIBUTION OF ANNUAL WHOLE BODY
GRAND JUNCTION FIELD O
1979

Dose Equivalent Ranges (rem)																	
Facility Type	Total Monitored	Meas.	$\begin{gathered} \text { Meas.- } \\ 0.10 \end{gathered}$	$\begin{array}{r} 0.10- \\ 0.25 \\ \hline \end{array}$	$\begin{array}{r} 0.25- \\ 0.50 \\ \hline \end{array}$	$\begin{aligned} & 0.50- \\ & 0.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75- \\ & 1.00 \\ & \hline \end{aligned}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	$\underline{9-10}>10$	Total Person-rem
Reactor																	
Fuel Fabrication																	
Fuel Processing																	
Uran. Enrichment																	
Weapon F\&T																	
Gen. Research																	
Accelerator																	
Other	148	101	18	20	8	1											8
Visitors	8	8															
DOE Offices	1	1															
total	157	110	18	20	8	1											8
TOTAL PERSON-REM			1	3	3	1											8

Dose Equivalent Ranges (rem)																		
Facility Type	Total Monitored	Meas.	Meas.- 0.10	$\begin{gathered} 0.10- \\ 0.25 \\ \hline \end{gathered}$	$\begin{aligned} & 0.25- \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{gathered} 0.50- \\ 0.75 \\ \hline \end{gathered}$	$\begin{gathered} 0.75- \\ 1.00 \\ \hline \end{gathered}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	>10	Total Person-rem
Reactor	3024	1780	691	257	155	84	33	21	3									256
Fuel Fabrication																		
Fuel Processing	2066	910	421	193	173	98	68	142	58	3								609
Uran. Enrichment																		
Weapon F\&T																		
Gen. Research																		
Accelerator																		
Other																		
Visitors	35929	35922	6	1														
DOE Offices	237	92	133	10	1	1												9
TOTAL	41256	38704	1251	461	329	183	101	163	61	3						-		876
TOTAL PERSON-REM			63	81	123	114	88	245	152	10								876

1979

TABLE A. 7
DISTRIBUTION OF ANNUAL WHOLE BODY
PITTSBURGH NAVAL REACCOR FI
1979
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY FACILITY TYPE
PITISBURGH NAVAL REACTOR FIELD ORGANIZATION
TABLE A. 8
distribution of annual whole body exposures by facility type RICHLAND FIELD ORGANIZATION
1979

Dose Equivalent Ranges (rem)																		
Facility Type	Total Monitored	$<$ Meas.	Meas.- 0.10	$\begin{aligned} & 0.10- \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{gathered} 0.25- \\ 0.50 \\ \hline \end{gathered}$	$\begin{gathered} 0.50- \\ 0.75 \end{gathered}$	$\begin{gathered} 0.75- \\ 1.00 \\ \hline \end{gathered}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	≥ 10	Total Person-rem
Reactor	667	13	85	88	85	46	41	140	157	12								761
Fuel Fabrication	84	1	6	20	17	16	12	9	3									52
Fuel Processing																		
Uran. Enrichment																		
Weapon F\&T																		
Gen. Research	2205	90	1525	367	109	45	31	36	2									296
Accelerator																		
Other	4913	248	2607	709	481	319	195	300	53	1								1391
Visitors	1807	566	1206	30	5													67
DOE Offices	53	4	42	6	1													4
TOTAL	9729	922	5471	1220	698	426	279	485	215	13								2571
TOTAL PERSON-R			274	213	262	266	244	728	538	46								2571

TOTAL PERSON-REM

Dose Equivalent Ranges (rem)																		
Facility Type	Total Monitored	Meas.	$\begin{gathered} \text { Meas.- } \\ 0.10 \end{gathered}$	$\begin{aligned} & 0.10- \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.25- \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{gathered} 0.50- \\ 0.75 \end{gathered}$	$\begin{aligned} & 0.75- \\ & 1.00 \\ & \hline \end{aligned}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	>10	Total Person-rem
Reactor	981	232	331	133	182	85	13	5										180
Fuel Fabrication	411	56	181	47	41	28	20	32	6									131
Fuel Processing	1664	209	600	267	207	138	70	134	39									600
Uran. Enrichment																		
Weapon F\&T	153	24	76	26	15	5		4	3									31
Gen. Research	994	438	425	51	32	22	15	10	1									87
Accelerator																		
Other	4791	2387	1787	387	134	46	23	27										297
Visitors	1891	1614	272	5														14
DOE Offices	223	172	51															3
TOTAL	11108	5132	3723	916	611	324	141	212	49									1343
TOTAL PERSON-R			186	161	229	203	123	318	123									1343

APPENDIX B
DISTRIBUTION OF ANNUAL WHOLE-BODY EXPOSURES BY CONTRACTOR FOR EACH DOE FIELD ORGANIZATION, 1979
TABLE B. 1
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR
ALBUQUERQUE FIELD ORGANIZATION
1979
Dose Equivalent Ranges (rem)

$\begin{aligned} & 0.10- \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.25- \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.50- \\ & 0.75 \end{aligned}$	$\begin{aligned} & 0.75- \\ & 1.00 \\ & \hline \end{aligned}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	>10	Total Person-rem
29	5	1	1											95
29	5	1	1											95
19	7													11
19	7													11
8	1	2												7
8	1	2												7
172	61	21	9	28	10	1	4	1						$\begin{array}{r} 185 \\ 16 \end{array}$
172	61	21	9	28	10	1	4	1						201
73	40	15	2	6										$\begin{array}{r} 92 \\ 2 \end{array}$
73	40	15	2	6										94

 Contractor
Albuquerque Misc.
Employees
Visitors
Total
General Electric Co.
Employees
Visitors
Total
Inhalation Toxicology
Employees
Visitors
Total
Mason \& Hanger-Silas
Employees
Visitors
Total
Monsanto Research Co.
Employees
Visitors
Total

$$
\begin{aligned}
& \text { Contractor } \\
& \text { Rockwell International } \\
& \text { Employees } \\
& \text { Visitors } \\
& \text { Total }
\end{aligned}
$$

DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR
ALBUQUERQUE FIED ORGANIZATION
1979
1979

[^2][^3][^4]\[

$$
\begin{aligned}
& \text { 잇 } \\
& \text { 웅 } \\
& \Phi \\
& \stackrel{\infty}{\wedge} \mid \\
& \hat{\dagger} \mid \\
& \stackrel{\circ}{i} \mid
\end{aligned}
$$
\]

$$
\begin{aligned}
& \text { Dose Equivalent Ranges (rem) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { O- 욷 } \\
& \text { 8 }
\end{aligned}
$$

$$
\begin{aligned}
& \text {) } \sim \stackrel{m}{n}
\end{aligned}
$$

(pənu!uo) L’g $318 \forall 1$

Contractor	$<$ Meas.	Meas.0.10	$\begin{aligned} & 0.10- \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.25- \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.50- \\ & 0.75 \end{aligned}$	$\begin{aligned} & 0.75- \\ & 1.00 \end{aligned}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	>10	Total Person-rem
The Zia Company																	
Employees	1238	144	54	19	1												24
Visitors																	
Total	1238	144	54	19	1												24
U. of California/LASL																	
Employees	2862	1060	231	154	84	41	64	3	1							1	360
Visitors	1207	78	17	4			2										11
Total	4069	1138	248	158	84	41	66	3	1							1	371

TABLE B. 2
DISTRIBUTION OF ANNUAL WHOLE BODY
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR CHICAGO FIELD ORGANIZATION
1979
Dose Equivalent Ranges (rem)

(panu!ıuo)) $\boldsymbol{\sim} \cdot \boldsymbol{g} \mathbf{3 1 9} \forall 1$
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR
CHICAGO FIELD ORGANIZATION
1979
TABLE B. 3
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR
GRAND JUNCTION FIELD ORGANIZATION
1979

잇

$$
\stackrel{\circ}{\circ} \mid
$$

$$
\stackrel{\oplus}{\infty} \mid
$$

$$
\stackrel{\otimes}{\mathrm{N}}
$$

$$
\hat{\dot{\phi}} \mid
$$

$$
\mid
$$

$$
|\dot{f}|
$$

$$
r \quad r
$$

Contractor

$$
\begin{aligned}
& \text { Allied Chemical Corp. } \\
& \text { Employees } \\
& \text { Visitors } \\
& \text { Total }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Arrington Const. } \\
& \text { Employees } \\
& \text { Visitors }
\end{aligned}
$$

Total
on Const.

Biggers Const.

Employees
Visitors
Total
Bingham Mechanical

$$
\begin{gathered}
\text { TABLE B. } 4 \\
\text { DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR } \\
\text { IDAHO FIELD ORGANIZATION } \\
1979
\end{gathered}
$$

$$
\begin{gathered}
\begin{array}{c}
\text { Total } \\
\text { Person-rem }
\end{array} \\
\hline \\
316 \\
316 \\
\\
1 \\
1
\end{gathered}
$$

Contractor	$<$ Meas.	$\begin{gathered} \text { Meas.- } \\ 0.10 \end{gathered}$	$\begin{aligned} & 0.10- \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.25- \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.50- \\ & 0.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75- \\ & 1.00 \\ & \hline \end{aligned}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	>10	Total Person-rem
EG\&G, Idaho, Inc.																	
Employees	1316	523	181	105	55	25	10										168
Visitors	26942		1														
Total	28258	523	182	105	55	25	10										169
Exxon Nuclear Co.																	
Employees	588	116	79	74	38	30	55	9	9								202
Visitors	3111	6															
Total	3699	122	79	74	38	30	55	9									203
Idaho Miscellaneous																	
Employees Visitors	203	156	63	51	26	8	1	1	3								85
Total	203	156	63	51	26	8	1	1	3								85
Jones-Boecon																	
Employees Visitors	6	23		1	1	1											3
Total	6	23		1	1	1											3
Lehigh Design Co.																	
Employees Visitors Total	27 27	7															
Total	27																

TABLE B. 4 (Continued)
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR IDAHO FIELD ORGANIZATION
TABLE B. 5
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR NEVADA FIELD ORGANIZATION
1979

$$
\begin{aligned}
& \xrightarrow{\begin{array}{c}
\text { Total } \\
\text { Person-rem }
\end{array}} \\
& \stackrel{\circ}{\lambda} \mid \\
& \begin{array}{l}
\circ \\
\hline 1 \\
\hline
\end{array} \\
& \text { ¢ } \\
& \stackrel{\infty}{\wedge} \mid \\
& \hat{\dagger} \mid \\
& \stackrel{\bullet}{i} \mid \\
& \stackrel{?}{4} \mid \\
& \text { m } \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Contractor } \\
\hline \\
\text { Air Resources Lab. } \\
\text { Employees } \\
\text { Visitors } \\
\text { Total } \\
\text { CER Geonuclear } \\
\text { Employees } \\
\text { Visitors } \\
\text { Total } \\
\\
\text { Defense Nuclear Agency } \\
\text { Employees } \\
\text { Visitors } \\
\text { Total } \\
\text { EG\&G, Inc. } \\
\text { Employees } \\
\text { Visitors } \\
\text { Total } \\
\text { EPA/NERC } \\
\text { Employees } \\
\text { Visitors } \\
\text { Total }
\end{array}
\end{aligned}
$$

TABLE B． 5 （Continued）
distribution of annual whole body exposures by contractor NEVADA FIELD ORGANIZATION

$$
\begin{aligned}
& \begin{array}{c}
\text { Total } \\
\text { Person-rem } \\
\hline
\end{array} \\
& -\quad- \\
& \text { の } ワ \\
& \text { 시 } \\
& \stackrel{\circ}{\circ} \mid \\
& \text { \& } \\
& \text { iㅇ } \\
& \text { ค| } \\
& \stackrel{\circ}{i} \\
& \text { f| } \\
& \text { ¢ } \\
& \widetilde{\sim} \mid \\
& \begin{array}{l}
\text { Dose Equivalent Ranges (rem) } \\
\begin{array}{ccc}
0.25- & 0.50- & 0.75-
\end{array}
\end{array} \\
& \begin{array}{l}
0.75- \\
1.00 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 웅 }
\end{aligned}
$$

Fenix \＆Scisson，Inc．
Employees
Holmes \＆Narver，Inc．
$\begin{aligned} & \text { Holmes \＆Narver，Inc．} \\ & \text { Employees } \\ & \text { Visitors }\end{aligned}$
Total
Nevada Miscellaneous
Employees
Visitors
Reynolds Electrical
U．S．Dept．of Interior
$\begin{aligned} & \text { Employees } \\ & \text { Visitors }\end{aligned}$
B． 11
TABLE B. 5 (Continued)
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR

Dose Equivalent Ranges (rem)																	
Contractor	$\underset{\text { Meas. }}{<}$	$\begin{gathered} \text { Meas.- } \\ 0.10 \end{gathered}$	$\begin{aligned} & 0.10- \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.25- \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.50- \\ & 0.75 \end{aligned}$	$\begin{aligned} & 0.75- \\ & 1.00 \end{aligned}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	>10	Total Person-rem
Wackenhut Services																	
Employees	244	4															
Visitors	67																
Total	311	4															
Westinghouse Electric																	
Employees	141																
Visitors	91																
Total	232																
total nevada	14037	134	21	12	2										1		26

$$
11
$$

$$
F
$$

$$
\infty \vee \underset{\sim}{\sim}
$$

$$
\stackrel{\circ}{\lambda}
$$

$$
\begin{aligned}
& o \\
& \frac{1}{1} \\
& \sigma
\end{aligned}
$$

$$
\begin{aligned}
& \infty \\
& \infty \\
& \infty
\end{aligned}
$$

TABLE B. 6
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR
OAK RIDGE FIELD ORGANIZATION
1979

$$
\stackrel{\infty}{\wedge} \mid
$$

$$
\hat{o} \mid
$$

$$
\begin{aligned}
& 0 \\
& i \\
& \text { in }
\end{aligned}
$$

$$
\begin{gathered}
n \\
p
\end{gathered}
$$

$$
\begin{array}{l|}
\pm \\
m
\end{array}
$$

$$
\begin{array}{l|l|}
n \\
\underset{N}{*} &
\end{array}
$$

$$
\left[\begin{array}{cc}
< & \begin{array}{c}
\text { Meas.- } \\
\text { Meas. }
\end{array} \\
\hline
\end{array}\right.
$$

Dose Equivalent Ranges (rem)

$$
\left.\begin{aligned}
& n \\
& \dot{N}
\end{aligned} \right\rvert\,
$$

$$
\begin{array}{ll}
i n & 0 \\
& 0 \\
0 & \dot{O}
\end{array}
$$

$$
\left.\begin{array}{ll}
\dot{\theta} & n \\
\dot{0} & n \\
\dot{0} & 0
\end{array} \right\rvert\,
$$

Contractor

Comp. Animal Res. Lab.
Employees
Visitors
Total
Goodyear Atomic Corp.
Employees
Visitors
Total
National Lead Co.
Employees
Visitors
Total
Oak Ridge Assoc. Univ.
Employees
Visitors
Total
Puerto Rico Nuclear Ctr. Comp. Animal Res. Lab.
Employees
Visitors
Total
Goodyear Atomic Corp.
Employees
Visitors
Total
National Lead Co.
Employees
Visitors
Total
Oak Ridge Assoc. Univ.
Employees
Visitors
Total
Puerto Rico Nuclear Ctr.

N N N

412
412
푞ㄲㄲ Puerto Rico Nuclear Ctr. Employees Visitors
Total

$$
\begin{aligned}
& \text { TABLE B. } 6 \text { (Continued) } \\
& \text { DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR } \\
& \text { OAK RIDGE FIELD ORGANIZATION } \\
& 1979
\end{aligned}
$$

Contractor	Meas.	Meas.0.10	$\begin{aligned} & 0.10- \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.25- \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.50- \\ & 0.75 \end{aligned}$	$\begin{aligned} & 0.75- \\ & 1.00 \end{aligned}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	>10	Total Person-rem
RMI Company																	
Employees Visitors	14	45	19	2													6
Total	14	45	19	2													6
Rust Engineering Co.																	
Employees Visitors		1374	97	1													86
Total		1374	97	1													86
Union Carbide Corp./ORGDP																	
Employees Visitors		7578	88	4		2											398
Total		7578	88	4		2											398
Union Carbide Corp./Y-12																	
Employees Visitors		6132	173	53	14	1											366
Total		6132	173	53	14	1											366
Union Carbide Corp./ORNL																	
Employees Visitors	5441 57	468 31	202 8	112 6	68	22	46	9									254
Total	5498	499	210	118	72	26	51	9									19 273

TABLE 8.7
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR
PITTSBURGH NAVAL REACTOR FIELD ORGANIZATION
1979

Dose Equivalent Ranges (rem)																	
Contractor	Meas.	Meas.- 0.10	$\begin{aligned} & 0.10- \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.25- \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.50- \\ & 0.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75- \\ & 1.00 \\ & \hline \end{aligned}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	>10	Total Person-rem
Duquesne Light Co.																	
Employees	1	204	72	37	5												40
Visitors	14	40															2
Total	15	244	72	37	5												42
Westinghouse Electric/BAPL																	
Employees	180	863	71	27	4	11	4										84
Visitors	76	20															1
Total	256	883	71	27	4	11	4										85
Westinghouse Electric/NRF																	
Employees	145	513	97	43	7	1											64
Visitors	52	17															64 1
Total	197	530	97	43	7	1											65
Westinghouse Plant Appa.																	
Employees Visitors	29	12	1	2													2
Total	29	12	1	2													2
TOTAL PITTSBURGH	497	1669	241	109	16	12	4										193

TABLE B.8
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR
RICHLAND FIELD ORGANIZATION
1979

Contractor	Meas.	$\begin{gathered} \text { Meas.- } \\ 0.10 \end{gathered}$	$\begin{aligned} & 0.10- \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.25- \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.50- \\ & 0.75 \end{aligned}$	$\begin{aligned} & 0.75- \\ & 1.00 \\ & \hline \end{aligned}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	>10	Total Person-rem
Automation Industries																	
Employees	28	218	16	1	1												15
Visitors	2	2															
Total	30	220	16	1	1												15
Pacific Northwest Laboratory																	
Employees	40	783	147	54	14	5	10	2									118
Visitors	40	53															${ }^{3}$
Total	80	836	147	54	14	5	10	2									
BCS Richland Inc.																	
Employees	4	4	1														
Visitors	1	2															
Total	5	6	1														
Hanford Eng. Dev. Lab.																	
Employees	50	742	220	55	31	26	26										177
Visitors	32	40	5														${ }^{3}$
Total	82	782	225	55	31	26	26										180
Hanford Environ. Health Found.																	
Employees		4															
Visitors		1															
Total		5															

table b. 8 (Continued)
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR
RICHLAND FIELD ORGANIZATION
1979

Dose Equivalent Ranges (rem)																	
Contractor	$<$ Meas.	Meas.- 0.10	$\begin{aligned} & 0.10- \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.25- \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.50- \\ & 0.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75- \\ & 1.00 \\ & \hline \end{aligned}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	>10	Total Person-rem
J.A. Jones Const. Co.																	
Employees Visitors	145	814 3	197	210	204	129	189	26	1								746
Total	145	817	197	210	204	129	189	26	1								746
Rockwell Hanford Oper.																	
Employees	71	1567	495	270	114	66	111	27									629
Visitors	435	958	21	3													629 53
Total	506	2525	516	273	114	66	111	27									682
United Nuclear Ind. Inc.																	
Employees	14	91	108	102	62	53	149	160	12								812
Visitors	3	47	4	2													812 4
Total	17	138	112	104	62	53	149	160	12								816
TOTAL RICHLAND	865	5329	1214	697	426	279	485	215	13								2561

TABLE B. 9 DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR
SAN FRANCISCO FIELD ORGANIZATION

1979 | Total |
| :---: |
| Person-rem |

$\stackrel{\circ}{\wedge} \mid$ $\stackrel{\circ}{\circ}$ © $\stackrel{\circ}{\circ}$ ô| $\stackrel{\bullet}{n} \mid$
4
$\dot{\sim}$
∞ Б \bullet
\bullet $\therefore \quad \therefore$ ${ }^{\circ}{ }^{\circ}{ }_{\infty}$
n N

\sim

Dose Equivalent Ranges (rem)

∞
$\stackrel{\square}{-}$
-

* n n
응
\ulcorner
\bigcirc
r
$\wedge n$ - 으
n

Contractor
Rockwell International
Energy Systems Group
Employees
Visitors
Total
Stanford Linear Accel. Ctr.
Employees
Visitors
Total
U. of California/LBL
Employees
Visitors
Total
U. of California/LLL
Employees
Visitors
Total
U. of California/LEHR
Employees
Visitors
Total

$$
\begin{gathered}
\text { TABLE B. } 9 \text { (Continued) } \\
\text { DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY CONTRACTOR } \\
\text { SAN FRANCISCO FIELD ORGANIZATION } \\
1979
\end{gathered}
$$

tableb. 11

Dose Equivalent Ranges (rem)																	
Contractor	$<$ Meas.	Meas.- 0.10	$\begin{aligned} & 0.10- \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.25- \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.50- \\ & 0.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75- \\ & 1.00 \\ & \hline \end{aligned}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	≥ 10	Total Person-rem
General Electric Co.																	
Employees	745	1336	105	34	7	4	1										107
Visitors	192	73	2	1	1												5
Total	937	1409	107	35	8	4	1										112
General Electric/MAO																	
Employees	24	16	1														1
Visitors																	
Total	24	16	1														1
TOTAL SCHENECTADY	961	1425	108	35	8	4	1										113

TOTAL DOE CONTRACTORS

APPENDIX C

DISTRIBUTION OF ANNUAL WHOLE-BODY EXPOSURES FOR DOE GOVERNMENT EMPLOYEES AND VISITORS BY DOE FIELD ORGANIZATION, 1979

Dose Equivalent Ranges (rem)																	
Organization	Meas.	Meas.- 0.10	$\begin{aligned} & 0.10- \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.25- \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.50- \\ & 0.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75- \\ & 1.00 \\ & \hline \end{aligned}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	>10	Total Person-rem
Albuquerque Operations	196	120	2	1													7
Amarillo Area Office	1	22	11			1											4
Dayton Area Office	5	17															1
Kansas City Area Office	9																
Los Alamos Area Office	252	79		3			1										7
Pinellas Area Office	6	2															
Rocky Flats Area Office		61	2	2	1												5
Sandia Area Office	1	2															
TOTAL	470	303	15	6	1	1	1										23
Chicago Operations	16	7															
Environmental Meas. Lab.	28	3	4														1
New Brunswick Lab.	55	9	3														1
TOTAL	99	19	7														2

C. 1
Inate., 1 Coninimed
distribution of annual whole-body exposures for DOE GOVERNMENT EMPLOYEES AND VIIITORS BY DOE FIELD ORGANIZATION

 TOTAL DOE GOVERNMENT
Penalty for Private Use, $\$ 300$

[^0]: (a)To meet the dose commitment standards above, operations must be conducted in such a manner that it would be unlikely that an individual would assimilate in a critical organ, by inhalation, ingestion, or absorption, a quantity of radionuclide(s) that would commit the individual to an organ dose which exceeds the limits specified in this table.
 (b)A beta exposure below a maximum energy of 700 keV will not penetrate the lens of the eye; therefore, the applicable limit for these energies would be that for the skin ($15 \mathrm{rem} /$ year).
 (c) In special cases with the approval of the Director, Division of Operational and Environmental Safety, a worker may exceed $5 \mathrm{rem} / \mathrm{year}$ provided his/her average exposure per year since age 18 will not exceed 5 rem/year.
 (d)All reasonable effort shall be made to keep exposure of forearms and hands to the general limit for the skin.

[^1]: (a)Separation of data prior to 1974 is unavailable.

[^2]: Ross Aviation, Inc.
 Employees
 Visitors
 Total
 Sandia Laboratories, NM
 Employees
 Visitors
 Total

[^3]: Sandia Laboratories, CA

[^4]: Employees
 Visitors
 Total
 The Bendix Corp. Employees

