DOE Zero Energy Ready Home

Tech Training Webinar Series

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Low Load High Efficiency HVAC

The Home of the Future....Today

Energy Efficiency & Renewable Energy

DOE Zero Energy Ready Home Resources

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Website

- www.buildings.energy.gov/zero/
- Events:
 - Upcoming in-person ZERH Trainings
 - Technical Training webinars
 - Conference Presentations
- Partner Locator
- Program Specifications
- Webinar Recordings

ENERG Office of E		icy & Renewable	Energy	
SERVICES	EFFICIENCY	RENEWABLES	TRANSPORTATION	ABOUT US
Home » Residential B	uildings » Zero Energy	Ready Home		
ZERO ENE	RGY READ	DY HOME		
Buildings Home				
About				
Emerging Technologies	Fir	id partners & hom	es Technical Res	sources
Residential Building	s	-	PERFORM	
Solar Decathlon			PERFORMANC Excellent by	E
Building America		T	Good D	
Home Energy Sco	re		Poor	
Home Performance with ENERGY STAR				
Better Buildings Neighborhood Program		Become a Partner	Resource	es
PowerSaver Loan	s		G	RO
Zero Energy Read Home	y		Contraction of the second	
Partner Log In		PARTNER		
Become a Partn	er			
Criteria				

Building America Solution Center

http://basc.pnnl.gov/

Energy Efficiency & Renewable Energy

Thank You

For More Information:

www.buildings.energy.gov/zero

Email:

zero@newportpartnersllc.com

0

σ

>

0

Zero Energy Ready Home Technical Solutions: Low Load High Efficiency HVAC Lessons Learned from Building America

Duncan Prahl, RA May 27, 2014

Today's Session

 Zero Energy Ready Homes have advanced insulation and draft sealing that reduce energy consumption and enable the design and installation of an engineered comfort system that is significantly smaller than those installed in houses just 10 years ago. This webinar will discuss key issues associated with designing these systems, including the appropriate load calculations (an how they can be manipulated), selection of equipment, duct layout strategies, selection of supply and return air locations, and proper register selection for air mixing in rooms.

Challenges

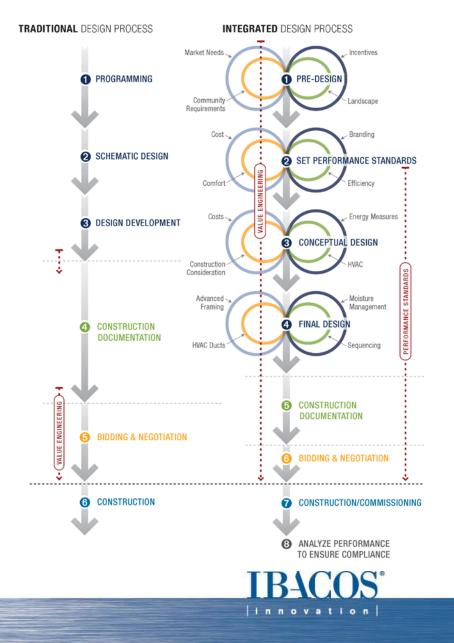
- Challenges with HVAC in Zero Energy Ready Homes
- More efficient enclosure
- Lower and lower whole house heating and cooling loads
- Higher latent to sensible load ratios (especially in south)
- More emphasis on "Right Sizing"
- Load imbalances between summer and winter

Top Five Solutions

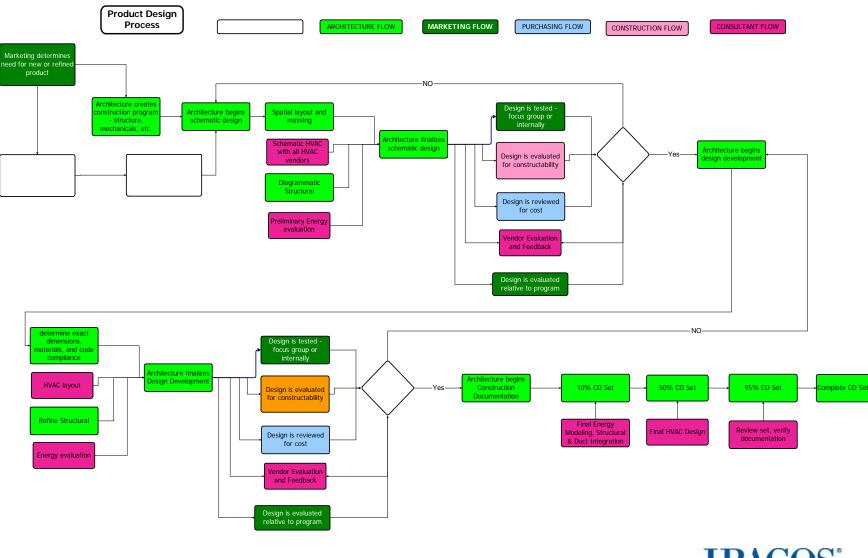
- Buy a Flux Capacitor and go back to the 50's
- Blame it on someone
 else
- Rethink how the space conditioning system is designed and installed
- Actually follow Manual J, S, T and D
- Keep velocity up and Mix, Mix, Mix

A Few More Challenges

- Energy Efficiency ≠ Comfort
- Builders typically have more comfort complaints than high bill complaints
- If it isn't comfortable, energy efficiency will be set back 20 years

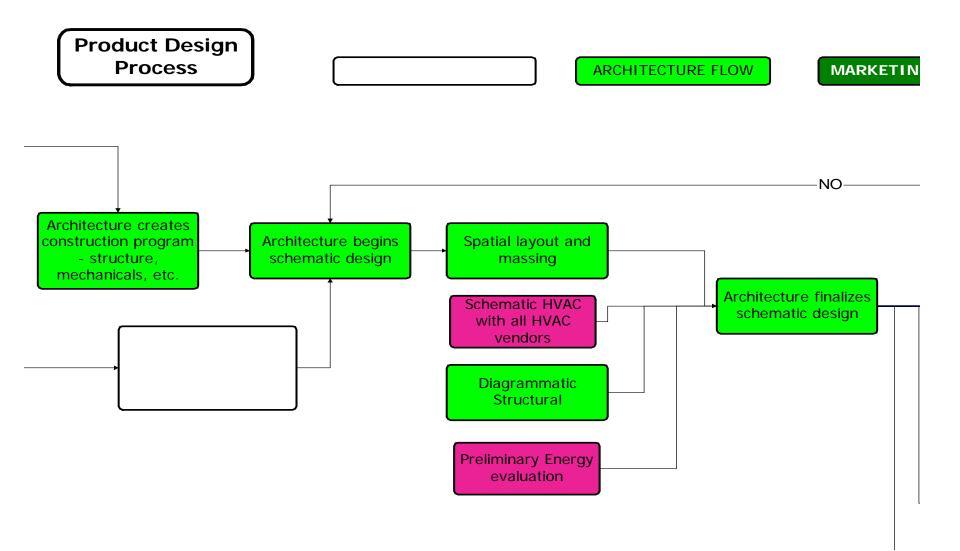

Examples of Discomfort

- Cold floor Hot head
 - Stratification
- Air blowing on person
 - Poor supply outlet location, selection, temperature, or throw
- Cold or Hot Surfaces = Low / High MRT
 - Poor choice of thermal enclosure elements
 - Not really an issue with ZERH enclosure
- Floor to floor or room to room temperature variations
 - Beyond +/- 3°F (cooling) = poor design of distribution system, high variance in thermal characteristics of various rooms



It All Starts at the Design Phase

- Set performance goals and responsibilities
- What is acceptable and what is not?
- What is the energy and system (HVAC, Plumbing) performance criteria?
- What are the aesthetic criteria?
- Determine expectations builder, trades, manufacturers, consumer
- What is the process for accountability?
- Testing and verification process (Commissioning)



Integrated Design Process Map

IBACOS

Schematic Design Phase

What does an ideal forced air system do?

- Delivers or removes energy from space (heats or cools)
- Mixes air in room to maintain temperature and fresh air uniformity
- Maintains humidity levels
 in comfort zone
- Is unnoticed by the occupants
- Is energy efficient

Sizing Trends

	System size sf/ton	Air flow cfm/sf	Air exchange rate ACH nat
Historic "Rule of Thumb"	400	1.0	0.5 - 0.75
Energy Star – Cold Climate	1107	0.37	0.31
Zero Ready – Cold Climate	1476	0.26	0.10
Passive House	2200 - 3200	0.08 – 0.18	.05

What's it all mean?

- Lower loads, lower airflow (cfm) per room
- Lower airflow = less air available to mix for the same volume room
- Same size house, same length ducts, lower airflow; duct tightness is important
- Long runs, less airflow, takes time to heat up duct mass, lower outlet temperatures at long runs on short cycles, t'stat location
- Register selection is critical

HVAC System Design Guides

- Right sizing being adopted by above code programs and by codes, but what does it really mean?
- Can't design by "Rule of Thumb"
- Implications of "knob twiddling" in load calculations can still lead to "right sized" systems that are grossly oversized
- More energy efficient enclosures with advanced systems can yield simplified strategies for duct layouts and supply outlet locations

innovation

HVAC System Design Guides- Building America Publications

 Help "demystify" the HVAC design process for non HVAC professionals

http://www1.eere.energy.gov/librar y/default.aspx?page=2 Search "IBACOS HVAC"

Loads:

http://apps1.eere.energy.gov/buildin gs/publications/pdfs/building_americ a/hvac_load_calc.pdf

Sizing:

http://apps1.eere.energy.gov/buildin gs/publications/pdfs/building_americ a/strategy_guide_hvac_sizing.pdf

Compact Ducts:

http://apps1.eere.energy.gov/buildin gs/publications/pdfs/building_americ a/strategy_guide_compact_air_dist. pdf

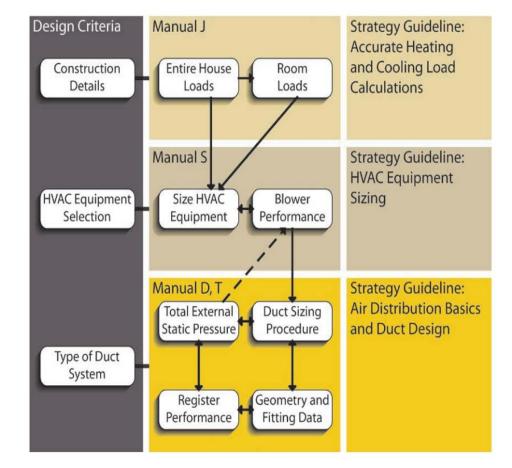
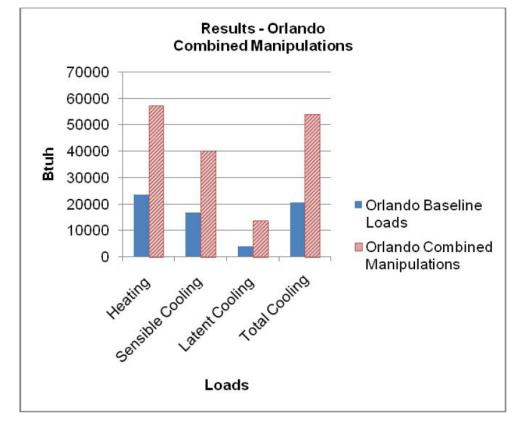


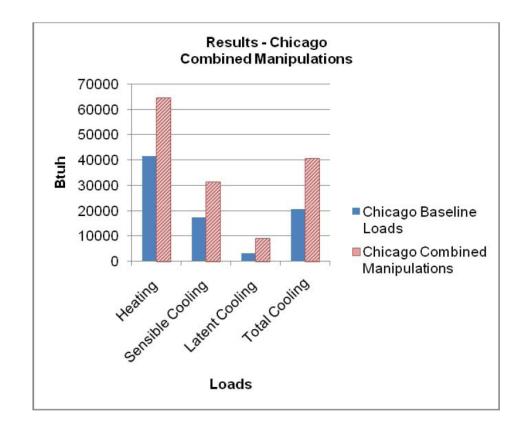
Figure 1. Design information from ACCA Manual J—Residential Load Calculation.

HVAC System Design Guides

- Demonstrate how easy it is to "right size" 2x the actual load
- Multiple runs through WrightSoft with common errors/safety factors
 - Altered outdoor/indoor design conditions
 - De-rated insulation, window performance, shading characteristics
 - Exaggerated infiltration and ventilation
 - Combined all safety factors for a grossly exaggerated load



Combined Fudge Factors - FL


	Baseline Load	Manipulated Load	Change In Load Btu/h	Change In Load %
Heating Load	23,600 Btu/h	57,200 Btu/h	33,600 Btu/h	142 %
Sensible Cooling	16,600 Btu/h	40,200 Btu/h	23,600 Btu/h	142 %
Latent Cooing	4,100 Btu/h	13,900 Btu/h	9,800 Btu/h	239%
Total Cooling	20,700 Btu/h	54,000 Btu/h	33,300 Btu/h	161 %

Combined Fudge Factors - IL

	Baseline Load	Manipulated Load	Change In Load Btu/h	Change In Load %
Heating Load	41,700 Btu/h	64,700 Btu/h	23,000 Btu/h	55 %
Sensible Cooling	17,400 Btu/h	31,600 Btu/h	14,200 Btu/h	82 %
Latent Cooing	3,200 Btu/h	9,100 Btu/h	5,900 Btu/h	184 %
Total Cooling	20,600 Btu/h	40,600 Btu/h	20,000 Btu/h	97 %

Denver, CO House

ZERH Home
R-18 Basement & Crawlspace walls
R-21 cavity, R-5 sheathing
R-46
R-54 & Vaulted Ceilings @ R-40
U-value 0.30 & SHGC 0.30
U-value 0.20
3.0 ACH50
HRV: supply 84 cfm, exhaust 84 cfm, run- time 50%, power 100 watts, & efficiency 82%
94.1 AFUE
18.1 SEER

Columbus, GA House

	ZERH Home
Foundation	Slab-on-grade no insulation
Above Grade Walls	R-13 – Cavity, R-5 Sheathing
Floors Over Unconditioned Space	N/A
Roof Insulation R-Value	R-29 Unvented attic
Windows	U-value 0.35 & SHGC 0.35
Exterior Doors	U-value 0.20
Building Air tightness	3.0 ACH50
Mechanical Ventilation	ERV: supply 60 cfm, exhaust 60 cfm, run-time 50%, efficiency 80%
Heat Pump	9.3 HSPF
AC	18.6 SEER

Heating and Cooling Bin Hours

Boulde	r, CO	Columbus GA				
DB (°F)	Total Hrs	DB (°F)	Total Hrs			
90 to 100	118	90 to 98	155			
78 to 90	673	78 to 90	1532			
32 to 68	5307	32 to 68	3911			
2 to 32	1610	14 to 32	181			
-10 to 2	77					

Cold Climate House Manual J Peak Loads

Outdoor Design Temps: -3°F & 93°F, Indoor Design Temps 71°F & 76°F

		Z	ZERH	Energy Sta	ar v.2
	Area (ft²)	Htg load (Btuh)	Clg load (Btuh)	Htg load (Btuh)	Clg load (Btuh)
First Floor & Basement	3,492	26,112	21,554	42,436	29,312
Upper Bedrooms	936	8,928	6,387	12,911	8,845
Entire House	4,428	35,040	25,423	55,346	34,585
Other equip loads		2,007	558	5,017	1,139
Equip. @ 0.98 RSM			25,409		34,938
Latent cooling			0		0
TOTALS	4,428	37,047	25,409	60,363	34,938

Cold Climate House Manual J Part Loads

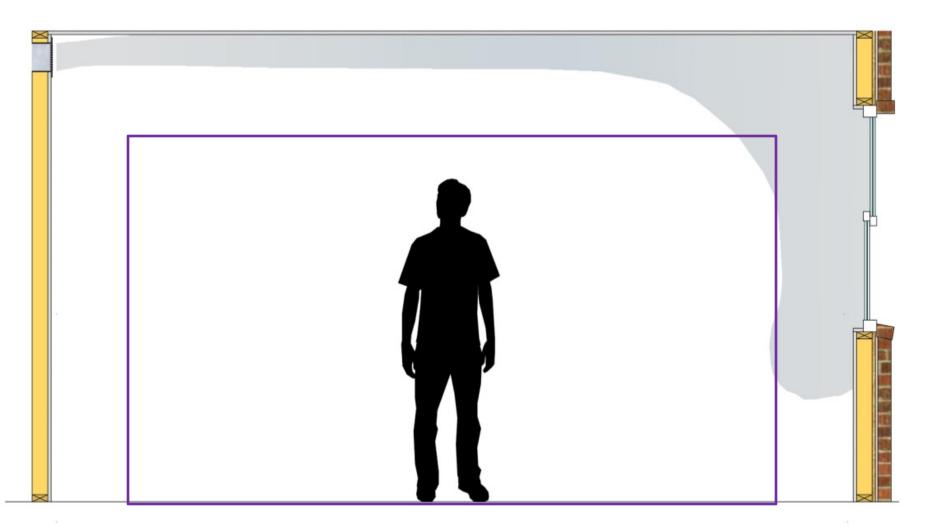
Outdoor Design Temps: 32 °F & 90°F Indoor Design Temps 71°F & 76°F

		ZE	RH	Energy St	ar V.2
	Area (ft²)	Htg load (Btuh)	Clg load (Btuh)	Htg load (Btuh)	Clg load (Btuh)
First Floor & Basement	3,492	13,762	20,686	22,365	27,826
Upper Bedrooms	936	4,705	6,049	6,804	8,365
Entire House	4,428	18,467	24,217	29,169	32,618
Other equip loads		1,058	482	2,644	949
Equip. @ 0.98 RSM			23,464		31,889
Latent cooling			0		0
TOTALS	4,428	19,525	23,464	31,813	31,889

Cold Climate House Peak Airflow (cfm)

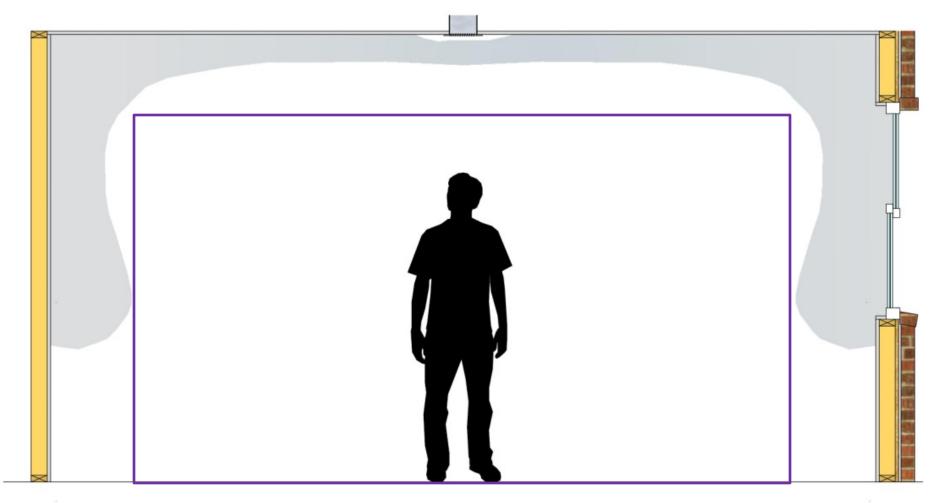
Outdoor Design Temps: -3°F & 93°F, Indoor Design Temps 71 & 76

			ZERH		En	ergy Star v	/.2
	Area (ft²)	Htg AVF (cfm)	Clg AVF (cfm)	% Diff	Htg AVF (cfm)	Clg AVF (cfm)	% Diff
Entry	212	31	25	21%	54	44	20%
Dining	168	70	100	-35%	100	153	-42%
Pantry	36	8	3	91%	14	5	95%
Powder	36	0	2	-200%	0	2	-200%
Master Bathroom	174	35	58	-49%	52	79	-41%
Master Bedroom	306	130	223	-53%	170	301	-56%
Kitchen / Nook	300	71	127	-57%	102	175	-53%
Laundry	68	32	19	51%	40	28	35%
Family	304	84	145	-53%	111	178	-46%
Bedroom	225	83	80	4%	127	102	22%

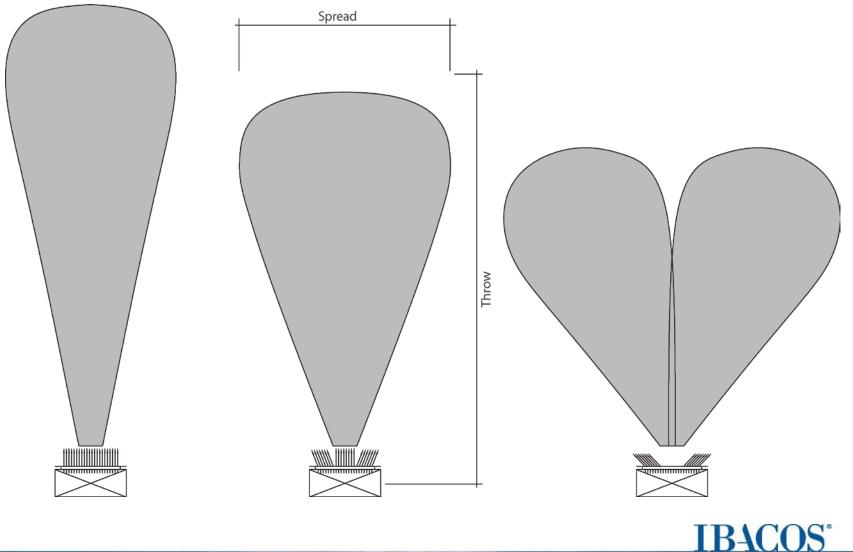


Supply Air Outlet Design and Selection

- Once again Peak vs. Part Load
- It's not just cfm
- Location, Location, Location
- Throw
- Face Velocity
- Terminal Velocity
- Air volume (cfm)
- Pressure drop
- Noise



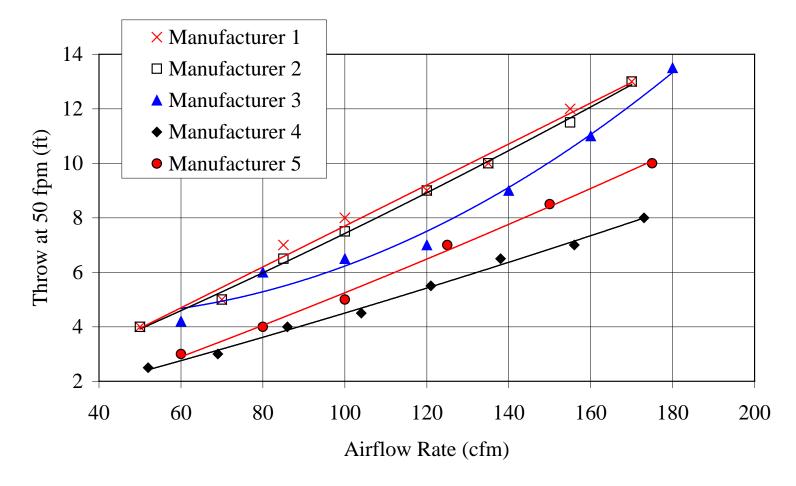
Diffuser Placement – Occupied Zone



Diffuser Placement – Occupied Zone

Register Throw and Spread

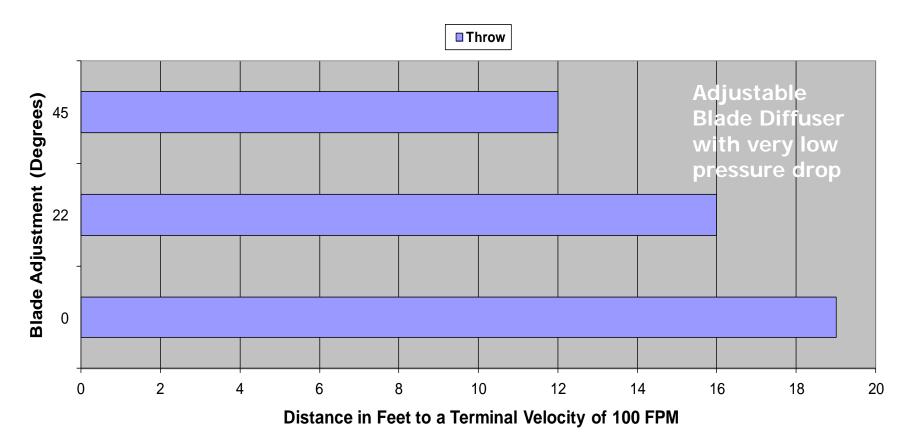
|innovation|


Register Characteristics

										Face Velocity
Face Velo	city	400	500	600	700	800	900	1000	1100	Pressure Loss
Pressure	Loss	.010	.016	.022	.031	.040	.050	.062	.075	
8 x 4	cfm	65	80	100	110	130	145	160	175	Delivery cfm
Ak .160	Throw	6.5	8.0	10.0	11.0	13.0	15.0	16.0	18.0	
10 x 4	cfm	80	100	120	140	160	180	200	220	
Ak .202	Throw	7.0	9.0	11.0	13.0	14.0	16.0	18.0	20.0	
12 x 4	cfm	100	120	145	170	195	220	245	270	
Ak .244	Throw	8.0	10.0	12.0	14.0	16.0	18.0	20.0	22.0	
14 x 4	cfm	115	145	170	200	230	255	285	315	
Ak .286	Throw	8.5	11.0	13.0	15.0	17.0	19.0	22.0	24.0	
12 x 5	cfm	125	155	190	220	250	280	310	345	
Ak.312	Throw	9.0	11.0	14.0	16.0	18.0	20.0	22.0	25.0	1
10 x 6	cfm	125	155	190	220	diar and that	FOOTNO			
Ak .314	Throw	9.0	11.0	14.0	16.0	1 Nucleis Nuclei				'A" scale.
Ak= net a	rea in sq	uare fe	et							ely quiet.
							2) Belov			
							,			nce Rooms; normal voice 10-30 ft. nce Rooms; 6-12 ft. normal voice.
										ooms; 3-6 ft. normal voice.
							(0) 1104	0 Oome		
*NC	30	N	C 35-							Noise Criteria
*less than or	equal to									

less than or equal to

Register Characteristics


Floor Register Performance (10x4)

innovati

on

Performance Characteristics of an 8x4 Adjustable Blade Diffuser (100 cfm)

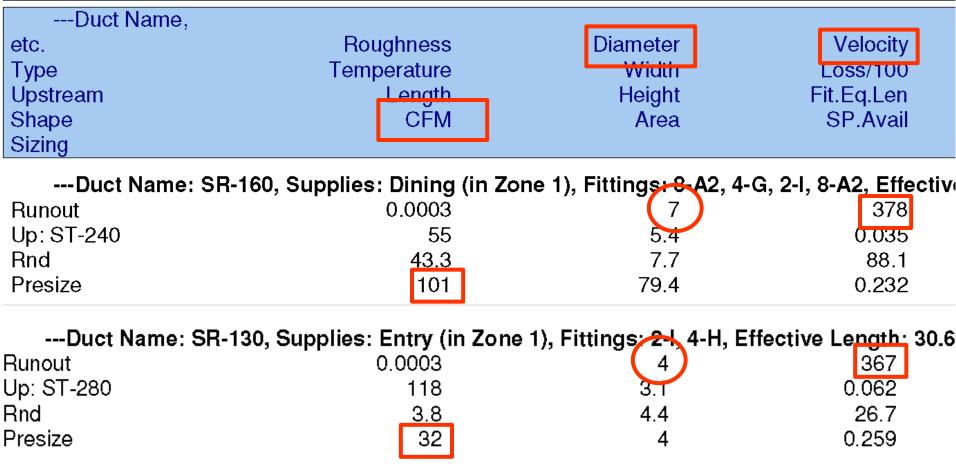
IBACOS

Calculating Register Performance

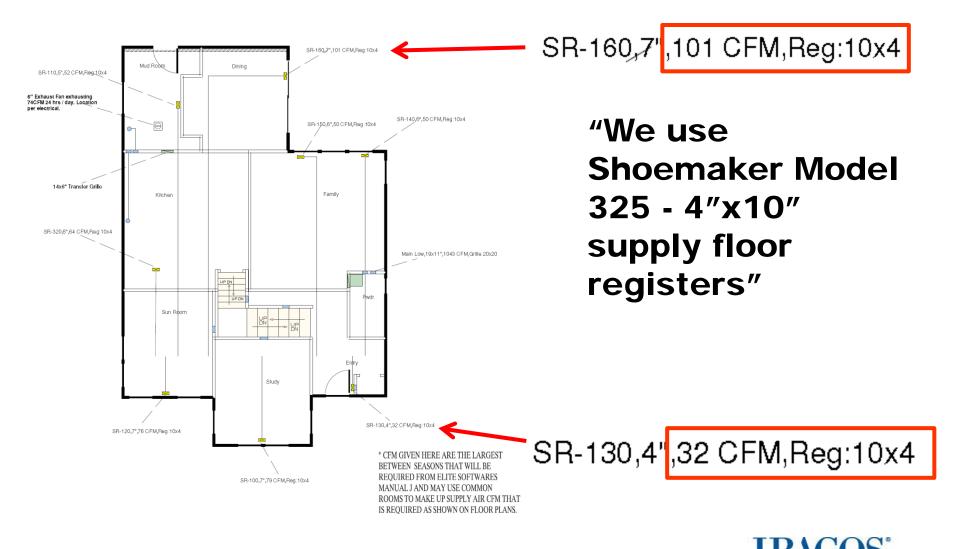
1. Calcu	late adjustment	
	CFM	80
	Ak	0.118
	K	3.3
	Vt	75
	Throw	9
	Adjustment	0.777
2. Enter de	esign parameters	
2. Enter de	esign parameters CFM	48
2. Enter de	- ·	48 3.3
2. Enter de	CFM	
2. Enter de	CFM K	3.3
2. Enter de	CFM K Terminal	3.3 Throw
2. Enter de	CFM K Terminal Velocity	3.3 Throw (feet)

Life is never simple:

Many registers are rated at 75 fpm throw boundary and tested at 100 plus cfm


Recommended K Values		
Outlet Type	Discharge Pattern	к
High sidewall grille	0° deflection	5.0
High sidewall grille	wide deflection	3.7
High sidewall linear	core < 4" high	3.9
High sidewall linear	core > 4" high	4.4
Low sidewall	up wall, no spread	4.4
Low sidewall	wide spread	2.6
Baseboard	up wall, no spread	3.9
Baseboard	wide spread	1.8
Floor	no spread	4.1
Floor	wide spread	1.4
Ceiling circular	360°	1.0
Ceiling square	4-way, little spread	3.3
Ceiling square	1-way, little spread	4.4
Ceiling linear	1-way, horizontal	4.8

See ASHRAE 2009 Handbook— Fundamentals, Chapter 20, Space Air Diffusion


CFM, Diameter, Velocity

Manual D Ductsize Data - Duct System 1 - Supply (cont'd)

What Really Happens...

innovation

Supply Outlet Selection

FOOTNOTE C:

NOISE CRITERIA: NC "A" scale.

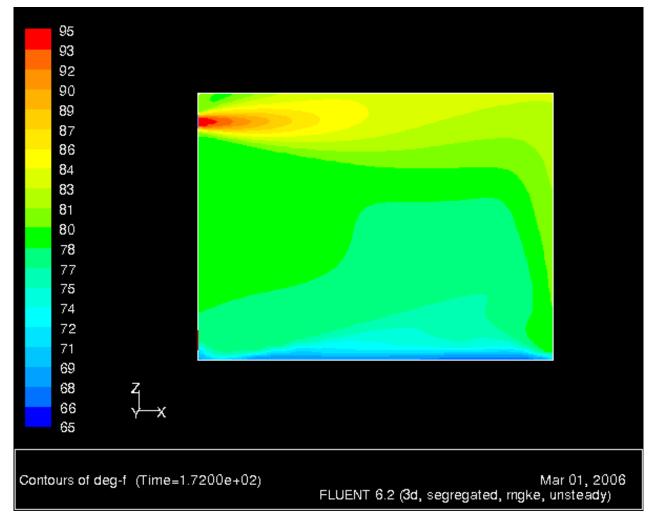
(1) Below NC25 extremely quiet.

(2) Below NC30 Quiet Office.

(3) Below NC35 Conference Rooms; normal voice 10-30 ft.

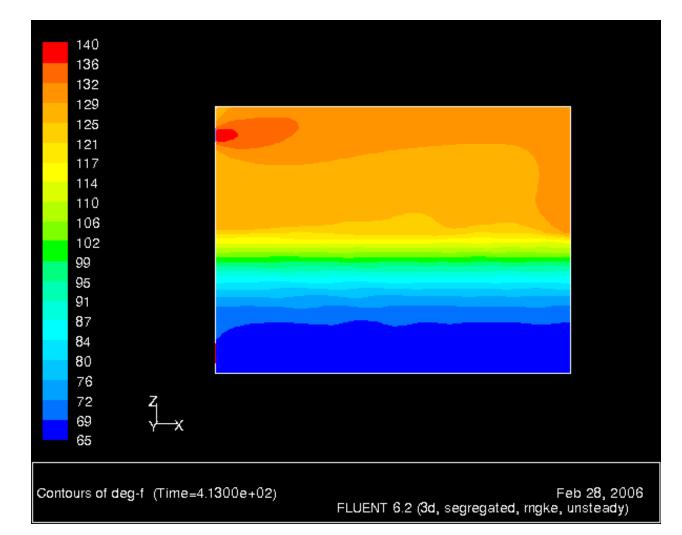
(4) Below NC40 Conference Rooms; 6-12 ft. normal voice.

(5) NC45 Conference Rooms; 3-6 ft. normal voice.


							1 10430 10101
Size	Velocity	300	400	500	600	700	800
Effective Area	Duct Pt	0.007	0.011	0.017	0.024	0.034	0.044
2x10	CFM	26.9	35.8	44.8	53.8	62.7	71.7
.089 ft²	Throw	1.5/2/3	2/2.5/3.8	3/5.5/5	3/4/5.5	3.5/5/6.5	4/5.5/7.5
	Spread	2.5	3	4	5	5.5	6
	NC	<20	20	25	25	30	30
	· · · - ·					1	
4x10	CFM	48.9	64.5	81.1	96.7	113.4	129.0
.171 ft²	Throw	3.5/4/4.5	5/5.5/6	6.5/7.5/8.5	7/8.5/9.5	8.5/10.5/12	9.5/11.5/13
	Spread	3	4	5	6	7	8
	NC	<20	20	25	25	30	35

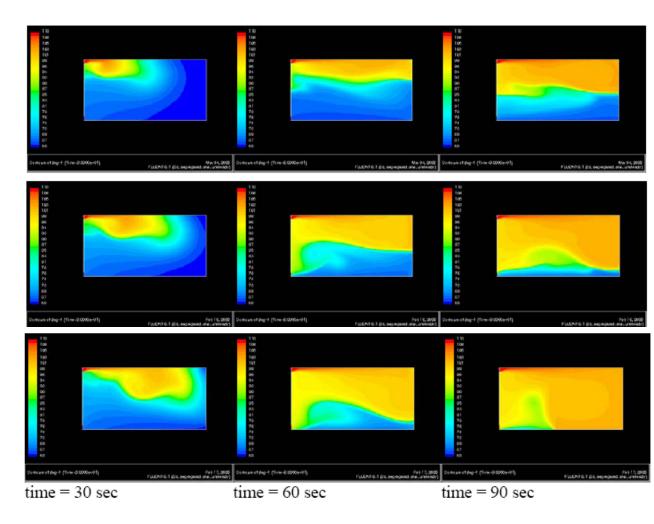
350 Series

Room Air Distribution


With air entering at 95°F and 790 ft/min, the room has good mixing.

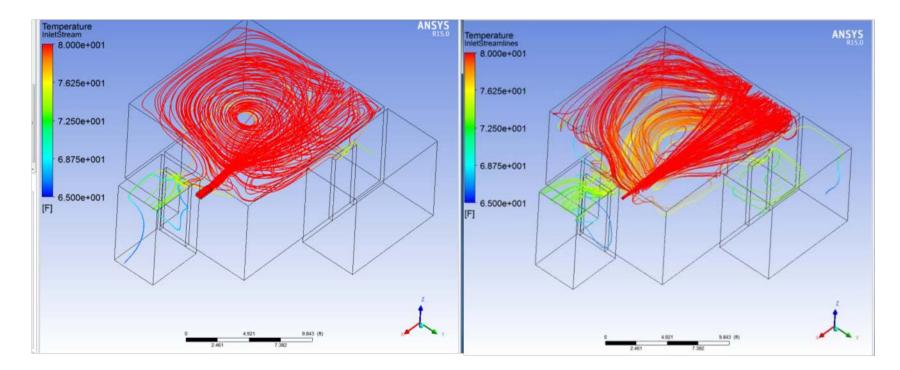
Room Air Distribution

With air entering at 140°F and 330 ft/min, the room shows stratification.


110 F Supply Air Temperature

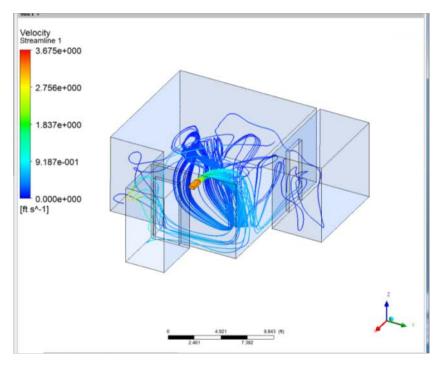
Supply Air Velocity

• 394 f/m

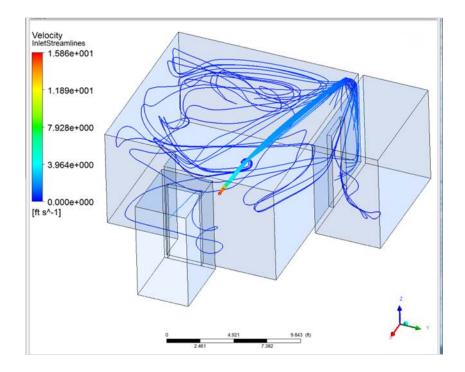

• 591 f/m

• 787 f/m

Air mixing - high sidewall interior register heating

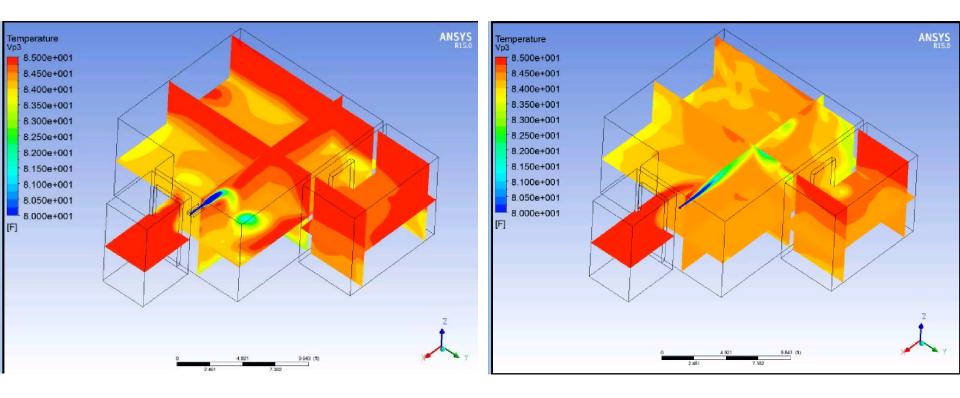

Standard register

3 inch diameter diffuser



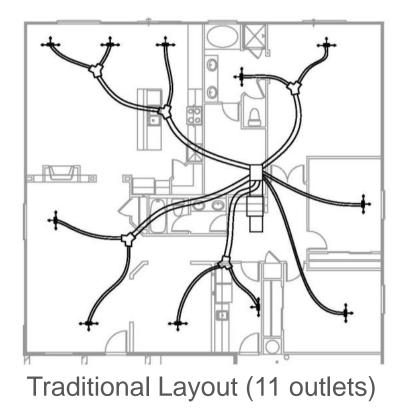
Air mixing - high sidewall interior register cooling

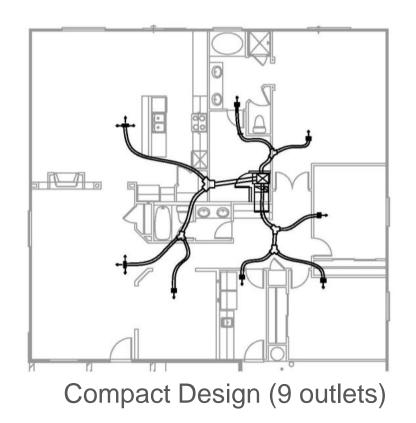
Standard register



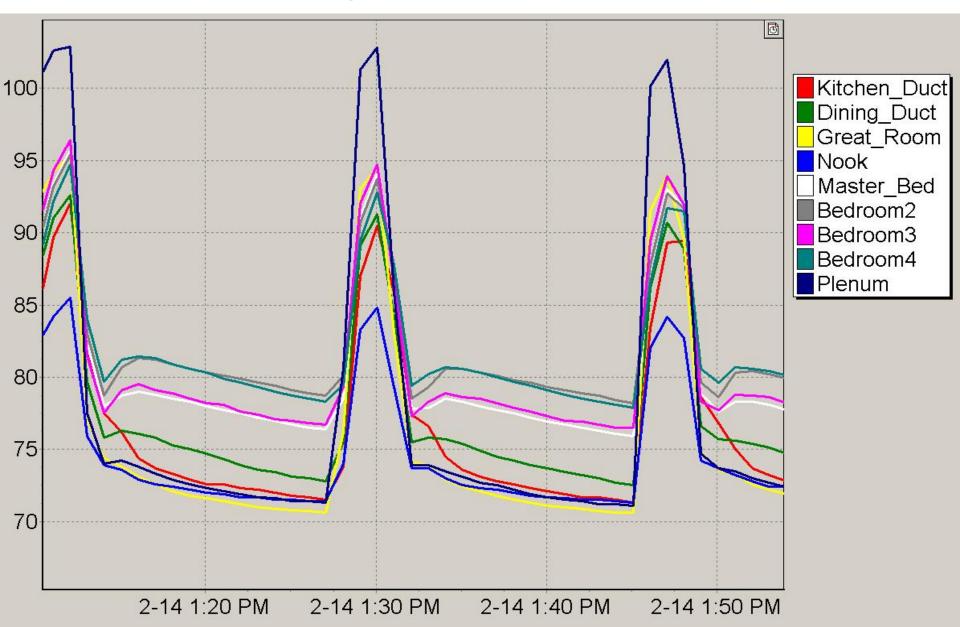
3 inch diameter diffuser

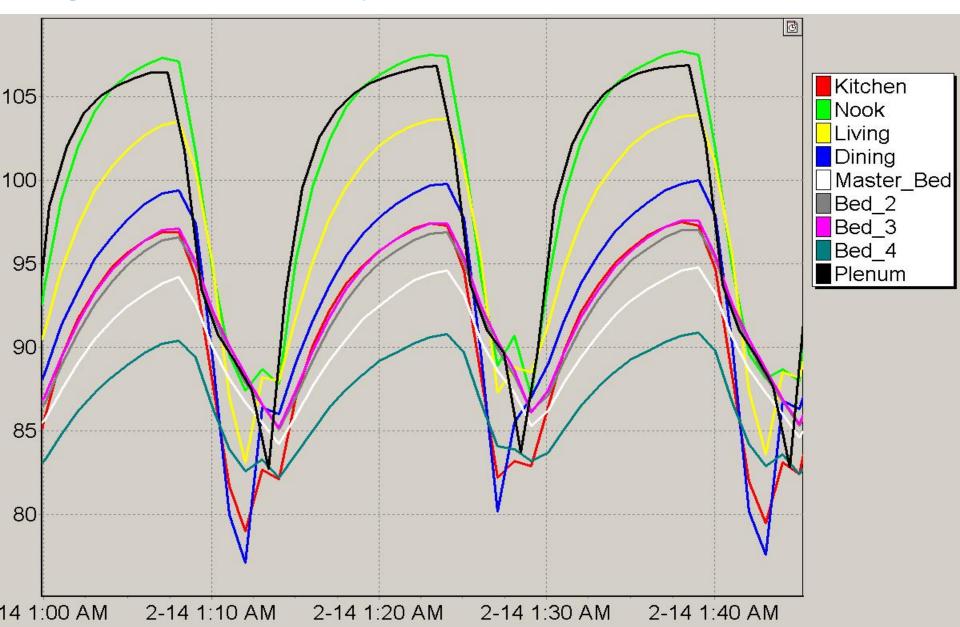
Another way to visualize it - cooling


Standard Diffuser


3 inch diameter diffuser

Supply Air Temperature Variables


- Compact vs. perimeter distribution
- High mass vs. low mass



Terminal Air Temperature Low Mass, Compact System

Terminal Air Temperature High Mass, Perimeter System

So what do you do?

- Equipment selection is critical
 - Total CFM is also critical
- DO a duct design, verify it is installed per the design
- Consider designing each duct run with higher velocities to get throw / mixing at supply outlet (Variable friction method – ASHRAE HVAC and Fundamentals Handbooks)
- Select supply outlets, don't just use what's on the truck
- Trending towards
 - Higher air velocity at outlet
 - Lower supply air temperature in heating mode
 - Longer run time
 - Be aware of air speed in occupied zone

Thank You

US DOE Building America Program Best Practices Research Alliance Cardinal Glass Industries Carrier Corporation National Renewable Energy Laboratory

IBACOS[®] | i n n o v a t i o n |

Questions? dprahl@ibacos.com

