Karen Bills, Shannon Roddy, Gary Hagan, Pete Calkin

August 26, 2009

Biography (to be removed by track lead)

Track 5 - Integration of Safety Into Design: 301 E, Wed. Aug. 26 at 3:00-3:30

- Karen Bills received a B.S. degree in mechanical engineering and a M.S. degree in industrial engineering, in 1980 and 1993, respectively, both from the University of Tennessee, Knoxville. She has worked on simulations of hardware response to earthquakes, graphical simulation of naval and nuclear designs, decision support process simulation, and robotic simulation for deactivation of the Department of Energy (DOE) facilities. She has spent 28 years at the Oak Ridge DOE facilities and is currently working on prevention of ergonomic risk in design using digital human modeling. Vocation includes innovative ways to display and analyze enormous amounts of disparate data to create cohesive information for exchange of ideas in aligning and meeting goals. She may be reached via e-mail at billskc@y12.doe.gov.

Introduction

- Workplace ergonomic injuries are significant, costly, and require long recovery periods.
- Design is the best and most economical time to identify problems and find a solution.
- Digital human modeling addresses a wide range of human factors.
- Reach
- Fit
- Vision
- Postures
- Forces

Orange - Change Soon

Red - Implement Change

Digital Human Simulation

NATIONAL SECURITY COMPLEX

Environment

Digital Human

Digital Human Adapts to Environment

Environment Adapts to Digital Human

Digital Human Fits Environment

Vision

Posture and Force

BRIEFTM Survey - Baseline Risk Identification of Ergonomic Factors

Step 2	Hands and Wrists		Elbows		Shoulders		Neck	Back	Legs
Identify Risks 2a. Mark Posture and Force boxes when risk factors are observed. 2b. For body parts with Posture or Force marked, mark Duration and/or Frequency box(es) when limits are exceeded.	Flexed $\geq 45^{\circ}$ Left	Ulnar Deviation Radial Deviation Right	Rotated Forearm		Arm Behind Body Left				Unsupported
2a. Posture	\square								
Force	Pinch Grip or Finger Press $\geq 2 \mathrm{lb}$ (0.9 kg), or Power Grip $\geq 10 \mathrm{lb}(4.5 \mathrm{~kg})$		$\begin{aligned} & \geq 10 \mathrm{lb} \\ & (4.5 \mathrm{~kg}) \end{aligned}$	$\begin{gathered} \geq 10 \mathrm{lb} \\ (4.5 \mathrm{~kg}) \\ \square \end{gathered}$	$\begin{aligned} & \geq 10 \mathrm{lb} \\ & (4.5 \mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \geq 10 \mathrm{lb} \\ & (4.5 \mathrm{~kg}) \end{aligned}$	$\geq 2 \mathrm{lb}(0.9 \mathrm{~kg})$	$\begin{gathered} \geq 25 \mathrm{lb}(11.3 \mathrm{~kg}) \\ \square \end{gathered}$	Foot Pedal $\geq 10 \mathrm{lb}(4.5 \mathrm{~kg})$
2b. Duration	$\geq 10 \mathrm{sec} .$	$\geq 10 \mathrm{sec} .$	$\begin{gathered} \geq 10 \mathrm{sec} . \\ \square \end{gathered}$	$\geq 10 \mathrm{sec} .$	$\geq 10 \mathrm{sec} .$	$\begin{gathered} \geq 10 \mathrm{sec} . \\ \square \end{gathered}$	$\begin{gathered} \geq 10 \mathrm{sec} . \\ \square \end{gathered}$	$\geq 10 \mathrm{sec} .$	$\begin{aligned} & \geq 30 \% \\ & \text { of day } \end{aligned}$
Frequency	$\geq 30 / \mathrm{min} .$	$\geq 30 / \mathrm{min} .$	$\geq 2 / \mathrm{min}$. \square	$\geq 2 /$ min. \square	$\geq 2 /$ min. \square	$\geq 2 /$ min. \square	$\geq 2 / \mathrm{min}$. \square	$\geq 2 /$ min. \square	$\geq 2 /$ min. \square
Score									
Risk Rating	H M L	H M L	H M L	H M L	H M L	H M L	H M	H M L	H M L

Zero (0) Weight at Arms Length

Five (5) Pounds at Arms Length

Options to Analyze

- Automated tools to analyze
- Analyze by hand to lesser degree
- Field adjust
- Do nothing

Productivity \& Cost Avoidance

600 procedures (4 to 10 tasks within each) 6 used for estimate

Manual Calculation

- Review 2 dimensional drawing
- 450 man-hours
- Reach Test
- 4500 man-hours
- Vision Test
- 2700 man-hours
- Force over range of motion
- 7200 manhours

Human Modeling

- Download 3D depictions of area
- 45 man-hours
- Reach Test
- 600 man-hours
- Vision Test
- 300 man-hours
- Force over range of motion
- 600 man-hours

Questions

Additional Slides

Sample Population
 (percentile male and female)

Ergonomic Analysis Tools

- Rapid Upper Limb Assessment (RULA)
- NIOSH 1981 and 1991 Lift Equations
- Snook and Ciriello - Lift/Lower, Push/Pull, Carry
- Biomechanics Single Action Analysis

Identical Postures

NIOSH 1991 Lifting Equation Recommended Weight Limit Average = 19 pounds (range 16 to 22)

Identical Location

NIOSH 1991 Lifting Equation Recommended Weight Limit Average $=23$ pounds (range 20 to 25)

NIOSH (1991) Lifting Equation Variables

Assume:
-A = angle of
asymmetry is zero, no twist
-1 lift every 10800 seconds (3 hours)
-Duration of lift is 1 hour or less
-Coupling Condition is Good

NIOSH 1991 Lifting Equations

Multipliers:

1) horizontal location $(H M)=10 / \mathrm{H}$
2) vertical location $(\mathrm{VM})=1-\left(.0075^{*}|\mathrm{~V}-30|\right)$
3) vertical travel distance $(\mathrm{DM})=.82+(1.8 / \mathrm{D})$
4) asymmetry $(A M)=1-(.0032$ * $A)=1$
5) frequency (FM) = 1
6) coupling (CM) $=1$

All Multipliers are ≤ 1
Recommended Weight Limit $($ RWL $)=$
$51 \mathrm{lbs} \times \mathrm{HM} \times \mathrm{VM} \times \mathrm{DM} \times \mathrm{AM} \times \mathrm{FM} \times \mathrm{CM}$

Disclaimer and Copyright Notice

DISCLAIMER

This work of authorship and those incorporated herein were prepared by Contractor as accounts of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, use made, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency or Contractor thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States

Government or any agency or Contractor thereof.

COPYRIGHT NOTICE

This document has been authored by a subcontractor of the U.S. Government under contract DE-AC05-00OR-22800. Accordingly, the U.S. Government retains a paid-up, nonexclusive, irrevocable, worldwide license to publish or reproduce the published form of this contribution, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, or allow others to do so, for U. S. Government purposes.

NATIONAL SECURITY COMPLEX

