

Formaldehyde in New Homes --Ventilation vs. Source Control

Brett C. Singer and Henry Willem

Environmental Energy Technologies Division Lawrence Berkeley National Laboratory

Presented at

Building America

Residential Energy Efficiency Stakeholder Meeting

March 1, 2012 Austin, Texas

Acknowledgments

Funding

- U.S. Department of Energy Building America Program
- U.S. EPA Indoor Environments Division
- U.S. HUD Office of Healthy Homes and Lead Hazard Control
- Cal. Energy Commission Public Interest Environmental Research

Technical Contributions

- Fraunhofer
- Ibacos
- IEE-SF

LBNL Team

Sherman, Hotchi, Russell, Stratton, and Others

Background 1

- Formaldehyde is an irritant and a carcinogen
- Odor threshold: about 800 ppb
- Widely varying health standards
 - ➤ US HUD (8-h): 400 ppb
 - ➤ Germany: 100 ppb
 - > WHO, Japan (0.5-h): 80 ppb
 - > Sweden (0.5-h): 50 ppb
 - ➤ Canada (8-h): 40 ppb
 - California ARB (8-h): 27 ppb
 - ➤ US NIOSH (8-h): 16 ppb
 - > CA OEHHA (chronic): 7.5 ppb
- *Goal is to reduce / minimize exposure, may not be viable to declare homes "safe" from formaldehyde

Physics of Formaldehyde Emissions

- > Formaldehyde in bulk material, diffuses to surface
- Conventional Understanding:

Increase ventilation → reduce air conc. → increase emissions

Background 2

- Limited recent formaldehyde data for U.S. new homes
 - California New Home Study:
 - > 108 homes: Summer/Winter, North/South splits
- Composite wood products are largest sources in homes
- Few examples of apportionment in finished homes

Formaldehyde highest in new homes, Concentrations decrease with age

Park JS, Ikeda K. Variations of formaldehyde and VOC levels during 3 years in new and older homes. Indoor Air. 2006 Apr;16(2):129-35.

Formaldehyde Emission Standards

- > CA: Composite Wood Air Toxic Control Measure
 - > Approved 2007 under authority to regulate outdoor air
 - Phased implementation 2009-2012
- ➤ U.S. Formaldehyde Standards in Composite Wood Products Act
 - > Approved 2010 to be implemented by Jan 1, 2013
 - Based on CA standards

Emissions Determinants

> Source

- Concentration within material
 - > Decreases with time
- Diffusion rates and barriers
- Connection to indoor air

> Environmental

- > Temperature
- > Humidity
- Solar insolation

Controlling Formaldehyde

- Source control:
 - > Seal with low-permeability laminate
 - Resin formulations that chemically bind formaldehyde
- Options requiring energy use in building
 - Dehumidification
 - Air cleaning / treatment
 - Ventilation?

Research Questions

- Can increasing ventilation substantially reduce formaldehyde concentrations in new homes?
- To what extent do emissions increase when air exchange is increased?
- Do homes built with low-emitting materials have lower formaldehyde concentrations? How much?

 This information is needed to evaluate the costeffectiveness of ventilation and source control!

Existing Data: California New Home Study

Built: 2002-5

Data: 2006-7

N=108

Offermann, F. J. 2009. Ventilation and Indoor Air Quality in New Homes. California Air Resources Board and California Energy Commission, PIER Energy-Related Environmental Research Program. Collaborative Report. CEC-500-2009-085.

California New Home Study Data

Built: 2002-5

Data: 2006-7

N=108

These homes built prior to formaldehyde emission standards

Ventilation impact in CA new homes Summer data

Built: 2002-5

Data: 2006-7

Age: 1.8-5.5 y

Summer

N=48

Ventilation impact not explained by age variations

Built: 2002-5

Data: 2006-7

Age: 1.8-5.5 y

Summer

N=48

Air Exchange Rate (1/h)

Ventilation impact not explained by T or RH variations

Built: 2002-5 Data: 2006-7 Age: 1.8-5.5 y

Summer N=48

Emission suppressed at low AER

Built: 2002-5

Data: 2006-7

Age: 1.8-5.5 y

Summer N=48

F, df (2.3, 2): P<0.1

Ventilation Intervention Study

- ➤ Modify AER in 9 homes with other parameters fixed
 - Materials
 - > Temperature
 - > Rel. Humidity
 - > Season
- AER control via mechanical ventilation
- Measure AER & concentrations, calculate emissions

	Age (yrs)	Floor area (ft²)	ACH 50	Low- emitting Material#
R1	2.0	2100	1.2	1,2,3
R2	1.5	150	4.0	1,2,3
R3	1.5	150	4.0	1,2,3
R4	0.3	1475	0.6	1,2,3
R5	7.5	1300	4.3	-
R6	0.8	1570	1.0	2,3
R7	1.0	2260	0.7	2,3
R8	2.5	1600	1.0	2
R9	2.5	3440	4.0	2

#1= Wood products compliant with CA Title 17 or low- or no- formaldehyde standards,

2= Wet surface finishing certified as low-emitting,

3= Carpet materials and backing low-emitting.

Lower concentration with increased AER in each study home

May - Sep 2011 Age: 0.3 - 2.5 y N = 9 homes

Emission impact of AER varies

May - Sep 2011 Age: 0.3 - 2.5 y

N = 9

Study of Source Control

Measure concentrations and AER in new homes constructed with low-emitting materials

- > 10 LEED / Indoor Air Plus homes in New Mexico (NM)
 - **>0.3 2.5** years old
 - >ATCM compliant wood products
- > 8 California homes complying with ATCM:
 - **>0.3** − 1.1 years old
- Additional data being collected in CA-compliant homes

Compare to CNHS and NM conventional homes

Low-emitting materials yield lower formaldehyde concentrations

Low-emitting materials yield lower emission rates, still depend on AER

Conclusions

- Emission limits on composite wood products reducing formaldehyde in new homes
- Increasing ventilation can reduce near-term concentrations, exposures
- Benefits of adding ventilation depend on starting point b/c emissions increase
- Increasing ventilation should deplete sources more rapidly
- Open questions
 - What is value of health benefits?
 - How much impact does higher ventilation have in long term?
 - Time evolution of homes with low-emitting materials?

Extra Slides

 The following slides will not be shown unless requested or needed

No Mechanical Ventilation Benefits only by Increasing AER

DOA HRV Built: 2002-5 Data: 2006-7

No MV

Age: 1.8-5.5 y

Summer N=48

Health Benefit Calculation

- Methodology described in Logue et al., Environmental Health Perspectives, 2012
- 10 ppb reduction for 100K people for 1 year saves 5 DALYs
- Assume 25K homes for every 100K people living in new homes
- \$100K per DALY -> \$500K per year ->
- \$20 per 10 ppb per year
- 10 ppb lower over 10 years -> \$200 per home

Ventilation impacts in CA new homes (Adjusted to 77 F and 50% RH)

Built: 2002-5 Data: 2006-7

Age: 1.8-5.5 y

Summer N=48

Air Exchange Rate (1/h)

No Clear Age Signal in CNHS

Built: 2002-5 Data: 2006-7 Age: 1.8-5.5 y

Summer N=48

Offermann, F. J. 2009. Ventilation and Indoor Air Quality in New Homes. California Air Resources Board and California Energy Commission, PIER Energy-Related Environmental Research Program. Collaborative Report. CEC-500-2009-085.