Performance Analysis of Air-Source Variable Speed Heat Pumps and Various Electric Water Heating Options Jeffrey Munk Oak Ridge National Laboratory ## Acknowledgements - Tennessee Valley Authority - David Dinse - U.S. Department of Energy - Roderick Jackson - Tony Gehl - Philip Boudreaux - ZEBRAlliance #### Overview - Electric Water Heating Options - Conventional Electric Water Heaters - Heat Pump Water Heaters - Air-Source - Ground-Source - Solar Thermal Water Heater - Variable Speed Heat Pumps - Energy Use Analysis - Measured Performance - Operational Characteristics ## Water Heating Options - Conventional Electric Water Heaters - 2 simulated occupancy - Heat Pump Water Heaters - 5 air-source (2 simulated occupancy, 3 real occupancy) - 3 ground-source (simulated occupancy) - Solar Thermal - 1 system (simulated occupancy) ## Water Draws for Simulated Occupancy #### Discretized version of Building America Research Benchmark 2008 | Time | Daily Shower
(Mixed @105°F) | Clothes Washer | Dishwasher | |-------|--------------------------------|---------------------|---------------| | 7:00 | 20 gal | Wednesday | | | 8:00 | | Saturday and Sunday | | | 8:30 | 5 gal | | | | 10:00 | | Saturday and Sunday | | | 12:00 | 5 gal | | | | 17:00 | 10 gal | Wednesday | | | 19:30 | | | Sunday-Friday | | 21:00 | 20 gal | | | #### Conventional Electric Water Heaters - Simulated Occupancy - WC4 HPWH in resistance mode - Installed inside conditioned space - 50 gallon tank - Annual COP = 0.86 - CC1 Conventional Electric WH - Installed in garage - 50 gallon tank - Annual COP = 0.86 ## Heat Pump Water Heaters All the same model, at factory set point of 120°F - What is driving the difference in COP? - Resistance Heat Use - What is driving the difference in COP? - Resistance Heat Use - What is driving the difference in COP? - Resistance Heat Use - What is driving the difference in COP? - Hot Water Use Difference in Daily Hot Water Use Compared to 59.9 gal/day #### What is driving the difference in COP? How much hot water needs to be drawn to trigger the resistance heat? Hot Water Quality | House | Percentage of
Hot Water
Drawn @ less
than 110°F | Percentage of
Hot Water
Drawn @ less
than 105°F | Annual
Measured COP | Avg Gallons of
Hot Water
Used/day | |---------|--|--|------------------------|---| | WC4 | 0.3% | 0.1% | 2.6 | 55.7 | | CC2 | 2.3% | 1.3% | 2.5 | 59.9 | | Baker | 8.2% | 4.2% | 1.6 | 26.7 | | Country | 30.1% | 18.7% | 1.2 | 61.3 | | Gaiter | 6.2% | 3.7% | 1.9 | 33.8 | ¹⁴ Managed by UT-Battelle for the U.S. Department of Energy ## Heat Pump Water Heaters Impact on Temperature in Surrounding Area | House | Average Temp in Location Installed Location while Heating (°F) | | Average Temp
in Installed
Location while
Off (°F) | Annual
Measured
COP | |--------------------------------|--|------|--|---------------------------| | WC4 | Conditioned Utility
Room | 66.5 | 72.5 | 2.6 | | CC2 | Unconditioned Garage | 66.4 | 68.6 | 2.5 | | Baker (only 10 months of data) | Conditioned
Basement | 69.3 | 69.9 | 1.6 | | Country | Conditioned
Basement | 65.3 | 65.7 | 1.2 | | Gaiter | Unconditioned
Basement | 61.7 | 65.6 | 1.9 | #### Ground-Source Water-to-Water HPs | House | Loop | Avg Gallons
of Hot
Water Used
(gal/day) | Avg Entering Water Temperature (°F) | Annual
Equipment
COP | Annual
System COP | |-------|------------|--|-------------------------------------|----------------------------|----------------------| | WC1 | Horizontal | 56.7 | 59.8 | 3.1 | 2.3 | | WC2 | Horizontal | 54.4 | 57.7 | 2.6 | 2.0 | | WC3 | Vertical | 56.6 | 58.7 | 2.9 | 2.1 | - Equipment COP = $m^*c_p^*(T_{out} T_{in})_{Equipment}$ /Runtime Energy - System COP = $m^*c_p^*(T_{out} T_{in})_{Tank}$ /Total Energy - Includes standby energy use ~15W or 350 Wh/day, ~10-15% - Includes tank losses, ~10% - Includes piping losses between tank and unit, ~2% #### Solar Water Heaters | House | Occupancy | Water Heater
Type | Annual
Measured
COP | Avg
Gallons of
Hot Water
Used/day | Monthly Solar Fraction (Solar Heating/Total Heating) | | lar
tal | |--|-----------|--------------------------------|---------------------------|--|--|------|------------| | | | | | | Avg | Min | Max | | CC3 (Lower
Element Turned
Down) | Simulated | 56 ft² Flat Panel
Collector | 2.3 | 55.6 | 0.72 | 0.37 | 0.99 | | CC3 (Lower
Element Set to
Heat to 120°F) | Simulated | 56 ft² Flat Panel
Collector | 1.5 | 55.6 | 0.50 | 0.15 | 0.93 | ## Solar Water Heaters (cont.) | House | Percentage of Water
Drawn @ less than
110°F | Percentage of Water Drawn @ less than 105°F | Annual
Measured
COP | Avg Gallons of
Hot Water
Used/day | |---|---|---|---------------------------|---| | CC3 (Lower Element
Turned Down) | 23.1% | 10.4% | 2.3 | 55 | | CC3 (Lower Element
Set to Heat to 120°F) | 0.6% | 0.4% | 1.5 | 55 | #### Equipment Cost and Performance | Equipment | Approximate Installed Cost | COP Range for Knoxville, TN | |--|----------------------------|-----------------------------| | Standard Electric | \$600 | 0.86 | | Heat Pump Water Heater (air-source) | \$1400 | 1.3-2.6 | | Heat Pump Water Heater (ground-source) | \$2,500 + ground loop | 2.0-2.3 | | Solar Thermal | \$10,000 | 1.5-2.3 | Despite relatively wide variations in efficiency, the airsource HPWHs had the best "bang for the buck" of the equipment tested. ## Variable Speed Heat Pumps - 4 systems evaluated from two different manufacturers - 2 identical systems from Manufacturer A. One installed in an occupied house (Green) and the other in an unoccupied house (CC2) - 2 identical systems from Manufacturer B. One installed in an occupied house (Lake) and the other in an unoccupied house (CC3) | System | High Heating
Capacity (Btu/h) | Region IV
HSPF | Nominal Cooling Capacity (Btu/h) | Region IV
SEER | |----------------|----------------------------------|-------------------|----------------------------------|-------------------| | Manufacturer A | 33400 | 13.0 | 35000 | 20.5 | | Manufacturer B | 27000 | 8.9 | 24000 | 18.0 | # **Energy Use Comparison** ## Manufacturer A Heating Season Manufacturer A TMY Energy Use Comparison Cooling Savings 681 kWh or 36% Heating Savings 1519 kWh or 32% Annual Savings 2200 kWh or 33% Manufacturer B TMY Energy Use Comparison Cooling Penalty 306 kWh or 23% Heating Savings Minimum 260 kWh or 11% **Heating Savings Maximum** 860 kWh or 30% ## Heating Season Measured Efficiency | Heat Pump | Published HSPF | Average HSPF From
Test Data | OAT Normalized
HSPF From Test Data | % Difference of
Normalized HSPF
from Published
HSPF | Average OAT during runtime | |---------------------------------|----------------|--------------------------------|---------------------------------------|--|----------------------------| | CC2
(Ducted Inverter
A) | 13.0 | 9.5±1.6 | 8.3 | -36% | 36.8 | | Green
(Ducted Inverter
A) | 13.0 | 11.2 | N/A | N/A | 45.1 | - Manufacturer A (CC2) Heating Season - Average capacity increases as average OAT decreases Percent of Total Runtime in Minutes broken down by Average OAT (°F) vs. Percent of Rated Capacity. Color shows average of HPF (Btu/Wh). The marks are labeled by Percent of Total Runtime. - Manufacturer A (CC2) Heating Season - Average capacity increases as average OAT decreases - Efficiency decreases as OAT decreases Percent of Total Runtime in Minutes broken down by Average OAT (°F) vs. Percent of Rated Capacity. Color shows average of HPF (Btu/Wh). The marks are labeled by Percent of Total Runtime. - Manufacturer A (CC2) Heating Season - Average capacity increases as average OAT decreases - Efficiency decreases as OAT decreases - Efficiency decreases as capacity increases Percent of Total Runtime in Minutes broken down by Average OAT (°F) vs. Percent of Rated Capacity. Color shows average of HPF (Btu/Wh). The marks are labeled by Percent of Total Runtime. ## Heating Season Measured Efficiency | Heat Pump | Published HSPF | Average HSPF From
Available Test Data | OAT Normalized
HSPF From Test Data | % Difference of
Normalized HSPF
from Published
HSPF | Average OAT during runtime | |--------------------------------|----------------|--|---------------------------------------|--|----------------------------| | CC3
(Ducted Inverter
B) | 8.9 | 8.1±1.3 | 7.9 | -11% | 33.6 | | Lake
(Ducted Inverter
B) | 8.9 | 7.8 | 7.5 | -16% | 43.9 | - Manufacturer B (CC3) Heating Season - Average capacity decreases with OAT - Not as clearly - Efficiency decreases with OAT - Efficiency decreases with decreased capacity - Manufacturer B (Lake) Heating Season - Trends not as clear - Majority of runtime at low capacity Percent of Total Runtime broken down by Average OAT (°F) vs. Percent of Rated Capacity. Color shows average of HPF (Btu/Wh). The marks are labeled by percentage of Total Runtime. ## Cooling Season Measured Efficiency | Model | Published
SEER | SEER Estimated
From Available
Test Data | OAT
Normalized
SEER | Diff Between
Normalized
SEER and
Published | Average OAT
while unit
was cooling | Average
Return Air
Temp ±2σ | Average
Return Air
Humidity
±2σ | |---------------------------------------|-------------------|---|---------------------------|---|--|-----------------------------------|--| | | (Btu/Wh) | (Btu/Wh) | (Btu/Wh) | | °F | °F | %RH | | CC2 (Ducted
Inverter A)
Overall | | 18.0±4.2 | 17.5 | N/A | 80.5 | 75.9±1.6 | 50%±7.7 | | CC2 Without RH
Control | 20.50 | 20.2±4.7 | 18.7 | -9% | 78.5 | 75.8±1.9 | 54%±3.8 | | CC2 With RH
Control | | 17.2±4.0 | 17.2 | N/A | 81.3 | 76.0±1.5 | 48%±4.9 | | Green (Ducted Inverter A) | 20.50 | 17.3 | 16.8 | -18% | 79.3 | 73.6±7.1 | 51%±7.7 | - Manufacturer A (CC2) Cooling Season - Efficiency decreases as OAT increases - Efficiency decreases as capacity increases - Majority of runtime at low capacity - Manufacturer A (Green) Cooling Season - Efficiency decreases as OAT increases - Efficiency decreases as capacity increases Percent of Total Runtime broken down by Average OAT (°F) vs. Percent of Rated Capacity. Color shows average of EER. The marks are labeled by % of Total Runtime. ## Cooling Season Measured Efficiency | Model | Published
SEER | SEER Measured
From Test Data | OAT
Normalized
SEER | Diff Between
Normalized
SEER and
Published | Average OAT while unit was cooling | Average
Return Air
Temp ±2σ | Average
Return Air
Humidity
±2σ | |-----------------------------|-------------------|---------------------------------|---------------------------|---|------------------------------------|-----------------------------------|--| | | (Btu/Wh) | (Btu/Wh) | (Btu/Wh) | | °F | °F | %RH | | CC3 (Ducted
Inverter B) | 18.00 | 12.0±2.6 | 11.4 | -37% | 80.0 | 73.9±2.1 | 47%±6.9 | | Lake (Ducted
Inverter B) | 18.00 | 16.2 | 15.3 | -15% | 80.0 | 74.2±4.0 | 57%±10.5 | - Manufacturer B (CC3) Cooling Season - Efficiency decreases as OAT increases - Efficiency decreases as capacity decreases - Mostly higher capacity range runtime Percent of Total Runtime broken down by Average OAT(°F) vs. Percent of Rated Capacity. Color shows average of EER. The marks are labeled by percentage of Total Runtime. - Manufacturer B (Lake) Cooling Season - Efficiency decreases as OAT increases - At OAT < 84, appears that efficiency increases as capacity increases Percent of Total Runtime broken down by Average OAT (°F) vs. Percent of Rated Capacity. Color shows average of EER(Btu/Wh). The marks are labeled by percentage of Total Runtime. ## Manufacturer A Summary - Performed as expected for a variable speed unit - OAT normalized HSPF was 36% lower than published, but still showed expected or better performance when compared to single speed units. - Essentially eliminated supplemental resistance heat use in this climate - Cooling performance was very good, nearly meeting rated SEER. - RH control performed as expected with a modest (8%) performance penalty ## Manufacturer B Summary - Units ran defrost cycles frequently (~ every 45 min) even at relatively mild OAT (low 50's). Could be why higher capacity data with lower runtime show better efficiency. - Efficiency trend with capacity was not always clear and sometimes opposite of expectations. - Poor cooling performance at CC3 is believed to be due to an equipment issue causing the unit not to modulate its speed as expected. - Unit at the Lake house showed good heating and cooling performance, within 16% of the rated SEER and HSPF #### Conclusions - Variable speed heat pumps are typically not a feasible option based purely on the economics - Ability to significantly reduce or completely eliminate the use of resistance heat - Some units allow homeowners more control over indoor humidity providing better comfort - Current study is looking at the performance of variable speed heat pumps that are significantly oversized for either heating or cooling. #### Questions? # Supporting Slides | Heat Pump | Published
HSPF | Average HSPF
From
Available Test
Data | OAT
Normalized
HSPF From Test
Data | % Difference
of
Normalized
HSPF from
Published
HSPF | Average
OAT during
runtime | Average Return
Air
Temperature
±2σ | Date Range | |---------------------------------|-------------------|--|---|--|----------------------------------|---|---------------------------| | CC1 HP1 | 7.7 | 5.6±1.0 | 5.1 | -33% | 35.9 | 68.4±1.8 | 11/1/2011 to
3/15/2012 | | CC1 HP2 | 7.7 | 5.9±1.0 | 5.4 | -30% | 34.7 | 70.3±3.2 | 11/1/2011 to
3/15/2012 | | CC2
(Ducted
Inverter A) | 13.0 | 9.5±1.6 | 8.3 | -36% | 36.8 | 72.0±3.0 | 2/6/2012 to
3/13/2012 | | Green
(Ducted
Inverter A) | 13.0 | 11.2 | N/A | N/A | 45.1 | 68.5±3.2 | 3/8/2012 to
4/22/2012 | | CC3
(Ducted
Inverter B) | 8.9 | 8.1±1.3 | 7.9 | -11% | 33.6 | 71.1±2.9 | 1/18/2012 to
3/11/2012 | | Lake
(Ducted
Inverter B) | 8.9 | 7.8 | 7.5 | -16% | 43.9 | 72.8±3.2 | 1/10/2012 to
3/13/2012 | | Model | Published
SEER | SEER
Estimated
From
Available Test
Data | OAT
Normalized
SEER | Diff Between
Normalized
SEER and
Published | Average
OAT while
unit was
cooling | Average
Return
Air
Temp
±2σ | Average
Return
Air
Humidity
±2σ | Date Range | |---------------------------------|-------------------|---|---------------------------|---|---|---|---|--------------------------| | | (Btu/Wh) | (Btu/Wh) | (Btu/Wh) | | °F | °F | %RH | | | CC1 HP1 | 13.0 | 7.2±2.4 | 7.1 | -45% | 80.6 | 74.9±1.5 | 52%±5.1 | 5/1/2012 to
8/31/2012 | | CC1 HP2 | 13.0 | 8.5±2.1 | 8.4 | -35% | 78.5 | 77.2±2.1 | 46%±6.1 | 5/1/2012 to
8/31/2012 | | CC2 (Ducted Inverter A) Overall | | 18.0±4.2 | 17.5 | N/A | 80.5 | 75.9±1.6 | 50%±7.7 | 5/1/2012 to
8/31/2012 | | CC2 Without RH Control | 20.50 | 20.2±4.7 | 18.7 | -9% | 78.5 | 75.8±1.9 | 54%±3.8 | 5/1/2012 to
6/8/2012 | | CC2 With RH
Control | | 17.2±4.0 | 17.2 | N/A | 81.3 | 76.0±1.5 | 48%±4.9 | 6/8/2012 to
8/31/2012 | | Green
(Ducted
Inverter A) | 20.50 | 17.3 | 16.8 | -18% | 79.3 | 73.6±7.1 | 51%±7.7 | 5/1/2012 to
8/31/2012 | | CC3 (Ducted Inverter B) | 18.00 | 12.0±2.6 | 11.4 | -37% | 80.0 | 73.9±2.1 | 47%±6.9 | 4/1/2012 to
8/31/2012 | | Lake (Ducted Inverter B) | 18.00 | 16.2 | 15.3 | -15% | 80.0 | 74.2±4.0 | 57%±10.5 | 4/8/2012 to
10/9/2012 | for the U.S. Department of Energy National Laboratory ## Manufacturer A Heating Season Manufacturer A Heating Season Resistance Heat Use Manufacturer A Cooling Season