Pressure Regain Strategies for Existing Air Distribution Systems

Arlan Burdick IBACOS, Inc.

Problem Statement

Thermal enclosure upgrades can reduce peak loads by 50%. If the furnace is right-sized for this new peak load and the ducts are not modified or replaced, the resulting airflows at the supply registers will be significantly reduced.

- -Will the outlets meet industry standards for performance?
- Should they be replaced to achieve good room air mixing?
- Should the end of the duct be modified to improve airflow characteristics?

Expected Results

We expect to find a cost-effective solution to gaining proper airflow to a room without completely replacing the existing ductwork.

Research Question #1

At what level of load reduction (airflow reduction) will the existing delivery mechanism no longer sufficiently provide comfort?

- Perform mathematical analysis based on existing standards to determine the percentage reduction in airflow whereby design airflow velocity may be insufficient to provide adequate throw to facilitate room air mixing.
- ACCA and ASHRAE standards

Research Question #2

What are the cost-effective designs (up to three) for a pressure regain register strategy?

- Material costing
- Time/motion study

Possibilities:

- Sealing off part of the existing outlet
- Insertion of smaller ring to duct with existing outlet
- Smaller register with new boot

Research Question #3

- Are the proposed cost-effective designs for a pressure regain strategy able to meet ACCA and ASHRAE standards for airflow velocity and noise?
 - Bench tests
 - Field tests
 - CFD
 - TRANSYS model

Critical Points

- Cost
- Ease of installation
- Distribution velocity
- Flow volume
- Noise at face

Background and Assumptions

- Need to get ducts into conditioned space
- Flex replacement is cost effective
- Metal ducts inside conditioned space
- Cold climate
- Floor outlets
- Basement

References

- House characterization study (IBACOS)
- Industry "rules of thumb"
- Retrofitted house data from IBACOS projects
- Residential energy conservation study
- FSEC "over sizing to run at low speeds" report
- Ian Walker LBNL blocked vents paper 2003
- ASHRAE Fundamentals 2009, Chapters 20 and 21
- ACCA Manual D
- ACCA Manual S
- ACCA Manual T

Status

- Test plan submitted
- Early background research begun
- Go/No Go based on turbulence, noise, and downstream effects per ACCA and ASHRAE standards (August 2013)
- Assemble documented conclusions into a technical report (August 2013 – December 2013)
- If reasonable strategies are found, plan for 2014 activity to include laboratory testing at IBACOS of strategies, and identify partners to field test strategies in occupied test houses.

Contact Information

Arlan Burdick aburdick@ibacos.com 412-477-4229

