What the World's GREATEST Energy Managers Do Differently?

U.S. DOE Advanced Manufacturing Office (AMO)

Tuesday Webcast for Industry

Role of an Energy Manager

July 10, 2012

Oak Ridge National Laboratory (ORNL) is DOE's Largest Science and Energy Laboratory

- \$1.4B budget
- 4,550 employees
- 4,000 research guests annually
- \$500M invested in modernization

- World's most powerful open scientific computer
- Operating the world's most intense pulsed neutron source and a world-class research reactor
- Nation's most diverse energy portfolio
- Nation's largest concentration of open source materials research
- Managing the billion-dollar U.S. ITER project

World's Greatest Energy Managers:

I. DO Understand the GAME

II. DO Build A Strong Coalition

III. DO Stay Focused and
Sustain Momentum

Approach – Bottom/UP and Top Down Use Inverted Pyramid Approach (IPA) – Your best friend!

Determine how many BTUs you need to CUT to make the GOAL

(Tools: Plant Energy MODEL)

Discuss Actions with Each Business Unit - Set Realistic Targets for Each Business Unit - Help make it happens

(Weekly Meetings with Business Units (BU)

Show Results to Gain Confidence and Sustain Momentum

Define Goals/Objectives/ Methods/Owners/Targets Publish-Share-Follow up

Start with the End in mind and work backwards!

GAP Analysis Tool Ask your TAM!

Detailed Energy Action Items

Back To Data Input Sheet

PROCESS HEATING ENERGY SAVINGS ACTION ITEMS - SUMMARY INFORMATION Implementation Followup								Followup				
	Year Identifie d	Who Identified	TATED V. D. A. J. J.		ENTER Energy Savings/Year					Due Date		
#			ENTER Your Energy Action Item	S	kWh	MMBtu	Fuel Type	ayback (Year:	Responsible	Due Date	Status	Issues
PH1	2008	DOE Expert	Install Blowdown Energy Recovery	\$180,000	0	50,000	Natural Gas	3.0			In Planning	
PH2	2009	DOE Expert	Repair Dyneon Condensate Pumps	\$55,000	0	30,000	Natural Gas	1.0			Implemented	
РНЗ	2009	DOE Expert	Oven Steam Trap Replacement	\$80,000	0	20,000	Natural Gas	2.0			In Planning	
PH4	2009	Internal Energy Team	Oven Optimization	\$10,000	0	1,250	Natural Gas	4.0			In Progress	
PH5	2009	Internal Energy Team	Repair observed insulation issues	\$3,000	0	375	Natural Gas	5.0			Implemented	
PH6	2010	Private Expert	Repair failed steam traps in Building 4	\$30,000	0	3,750	Natural Gas	2.0			In Planning	
PH7	2010	Private Expert	Implement World-Class Trap Management	\$150,000	0	18,750	Natural Gas	1.0			Implemented	
PH8	2011	Private Expert	XX		0	40000						
PH9					0							
PH10					0							
			Total Energy Savings	\$508,000	0	164,125						
			Plants Total Energy Consumption (MMBtu/Year)	3,000,000								
			% Source Energy Savings Potential - Process Heating	5.5%								

	ANT CONTACT INFORMATION							
	Name	Terry Brooks – Site Energy Manager						
Address		1400 State Docks Road						
	City/State	Decatur, Alabama 35609						
	Phone	256-552-6184						

GAP Analysis using Plant Identified Energy Actions:								
Click on System Type to Enter DATA	% Energy Savings (Calculated)							
Process Heating Energy Actions Items	5.5%							
Steam Energy Actions Items	6.8%							
Compressed Air Energy Actions Items	2.0%							
Fans Energy Actions Items	4.0%							
Pumps Energy Actions Items	0.5%							
Other Energy Actions Items (HVAC - Lighting,)	2.7%							

Plant Energy Health⁽¹⁾ Model your Plant Energy Systems – Use Simple Engineering Calcs.

Fatty Electricity + High LDL Cholesterol CA System + Unhealthy NG/Coal

During Weekdays - Need to Cut down *

Required BTU For Production should all Energy Waste Streams are Eliminated + Design for Energy is Considered

Fatty Electricity + High LDL Cholesterol CA System + Unhealthy NG/Coal

During Weekends Need to Cut down

(1) Alkadi, N.M., "Energy and Productivity, two sides of a coin in US Auto Industry", SAE, Detroit, USA, April 2006

Movable Weekend

Push the Envelope

you achieve Near

ZERO?

Shutdown GOAL

Give Each Business Unit their **Energy Thermometer**

A Visual that shows the Weekend **Energy Shutdown Goal (If** Applicable to your Plant/Process)

> Setting the shutdown **Goal requires Familiarity** with Equipment/Devices that Can be safely shutdown during Nonproduction hours

Report Performance to Management on a Weekly Basis

Business Unit	WE 1	WE 2	WE 3	WE 4	WE 5	WE 6	WE 7	
BU A	Goal Made	Goal Made	Goal Made	Goal Made	Goal Made	Goal Made	Goal Made	
BU B	Goal Missed	Goal Made	Goal Made	Goal Made	Goal Made	Goal Made	Goal Made	
BU C	Goal Made	Goal Made	Goal Made	Goal Missed	Goal Made	Goal Made	Goal Made	
BU D	Goal Missed	Goal Missed	Goal Made	Goal Made	Goal Made	Goal Made	Goal Made	
BU E	Goal Missed	Goal Missed	Goal	Goal Missed	Goal Made	Goal Made	Goal Made	
BU F	Goal Missed	Goal Made	Goal Made	Goal Made	Goal Made	Goal Made	Goal Made	
BU G	Goal Missed	Goal Made	Goal Made	Goal Made	Goal Missed	Goal Made	Goal Made	
BU H	Goal Missed	Goal Missed	Goal Made	Goal Made	0	Goal Made	Goal Made	

Give Details on how to get there

- Compressed Air Reduction Plan (Example)

Source: Alkadi, N.M., Kissock, J.K., "Improving Compressed Air Energy Efficiency in Automotive Plants - Practical Examples and Implementation" SAE International, April 2011. Website: http://papers.sae.org/2011-01-0325

Compressed air demand before and after a dedicated effort to fix compressed air leaks

Each Square Represents 5 Days

Turn off one Air Compressor Permanently

Support
Maintainence Staff
Make the Business
Case - Solicit
Funds - Sell to
Mgmt

Source: Alkadi, N.M., Kissock, J.K., "Improving Compressed Air Energy Efficiency in Automotive Plants - Practical Examples and Implementation" SAE International, April 2011. Website: http://papers.sae.org/2011-01-0325

Each Square Represents 5 Days

Impact of Compressed Air Reduction on Number of Operating Air Compressors

Lead with Vision

ENERGY / CO2 REDUCTION HIERARCEY

Think "OTB" outside of the Box

DFA (Design for Assembly)

DFER (Design for Energy Reduction)

Design Your Product and Process For Energy

Concurrent Engineering Product Design Status

Simplify the design
Reducing # of pieces
Product assembly became
easier and faster
Product cost is less

N. E. Alkadi, B. Gopalakrishnan, S. A. Chaudhari , "Product Design for Energy Reduction in Concurrent Engineering, An Inverted Pyramid Approach", Int. J. Industrial and Systems Engineering

II. Build A Strong Coalition

(Communication)^

- 1) Meet one on one with your Plant Manager at least once per year (Why: Show him that you Understand the Playing Field + Ask for Support)
- 2) Meet with your Maintenance Staff one day before Energy Meeting (Why: Show/Discuss with him/her Meeting Agenda so that No Surprises!)
- 3) Meet with your Production Manager/Department/Month During Energy Meeting (Why: Get Support to Make Things Happen)
- 4) Meet one on one with Safety & IH on Monthly Basis
 (Why: Show him that you care about safety & Get buy-in straightforward Energy ideas)
- 5) Meet with Team Leaders from Production & Maintenance Once per Quarter (Why: Give overview on State of Plant Energy & how they can make a Difference)
- 6) Facilities and Engineering Director Staff Corporate Office
 (Your Biggest Support Work with them and keep them in the Loop)

III. Sustain Momentum

- ✓ Speak Dollars
- •[How: Issue Checks & Balance once a month]
- ✓ Look for New Opportunities

Open your eyes to Suggestions - Talk to Floor People - READ ENERGY

✓ Keep a High Profile

Try to attend Production meetings at least once per month

- ✓ Increase top Management's Visibility
- •Keep open Line of Communication with Leadership Team through VME, email, Face to Face Meetings.
- ✓ Grow the Grass Roots

Educate All Plant Levels with Simple Home Energy Saving Ideas – Use Powerful Weekly Energy Letters

- ✓ Compare to Competitors/Show Brutal Facts
- ✓ Share SUCCESS!

\$HOW

Check\$ and Balance

On a Monthly Basis – REPORT:

- 1. Total Energy Bill This Month (A) = X\$
- 2. Total Energy Bill Month (A) Last Year = Y\$
- 3. Total Energy Saved = X\$ (Y\$)Adjusted*
- Make sure to Adjust for Weather, Production, and other Variables to reflect True Savings attributed to REAL ENERGY PROJECTS IMPLEMENTED
- Use DOE Baselining Tool (ENPI 2.0) to do that Will be public soor
- (Talk to your DOE-AMO Technical Account Manager / TAM)

Thank You!

Nasr Alkadi, PhD, CEM, CDSM

Oak Ridge National Laboratory

U.S. Department of Energy

Phone: 865-241-8181

Email: <u>Alkadine@ornl.gov</u>

Slides from Previous Webcasts

To access the slides from this and previous Webcasts, please visit: http://www1.eere.energy.gov/manufacturing/resources/tuesday_webcasts.html

Next Month's Webcast

Please join us for our next Webcast. **Topic:** Public Relations Aspect of Energy Efficiency Projects

Date and Time: Tuesday, August 14 at 11:00 a.m. PDT/2:00 p.m. EDT

To Register:

https://www1.gotomeeting.com/register/965278200