

SiC_f-SiC_m Composite for BWR Channel Application

Ken Yueh

DOE NEET WEBINAR August 20, 2013

Research Objectives & Industry Value

Objectives

- Evaluate the feasibility of using SiC_f-SiC_m composites as a nuclear fuel structural material
 - Thorough screening of design requirements against known properties of SiC
 - Generate data/evaluate and disposition issues identified
 - Evaluate material in-core neutronic and economic impacts
 - Evaluate different composite structure and fabrication processes

Value

- Stability of SiC in a reactor environment and resistance to high temperature steam degradation offer revolutionary performance improvements
 - Eliminates BWR channel bow and improves safety system performance
 - High temperature steam oxidation rate a fraction of existing materials
 - Coolable geometry maintained much longer in a loss of coolant accident
 - Multiple lifetime capability
 - Lower neutron capture cross-section can lead to \$3 million in savings per reload
- Could be applied to PWR structures as well

Scope

- Initial design screening (complete)
 - Fragmentation resistance and Irradiation induced swelling issues resolved
 - Eliminated polymer infiltration pyrolysis (PIP) process
- Material property characterization and issue resolution
 - Generate data to support the insertion of a commercial lead channel
 - Resolve two remaining issues (LOCA quench survivability and silica release)
- 1/3 Scale integral sample demonstration in HFIR
- Post irradiation mechanical testing
- Data evaluation and commercial demonstration decision

Initial Volumetric Swelling Concerns

- Initial irradiation induced volumetric swelling
 - $\sim 1.5\%$ by volume
 - Saturates within ~6
 months of operation and
 remain stable to very
 high fluence
 - G. Newsome et al., J. of Nuc. Mat., 371 (2007) 76-90

Impact of Irradiation Induced Swelling

- Initial irradiation induced volumetric swelling
 - Data indicates maximum differential volumetric swelling is around 0.12%
 - Only a handful of core locations pose a challenge now and could be mitigated with core design changes (25% flux gradient shown)

Fragmentation Resistance Evaluation Test Article

 SiC fiber reinforced SiC matrix composite fabricated for impact testing (4"x4"x24", 0.05-0.06" wall) via CVD process

Fig. 3.2 Cross section of the RUC along the + θ_a braider yarr

- Hi-Nicalon Type-S fiber
- Chemical vapor deposition process

- Joint effort with Idaho National Laboratory on fabrication via polymer infiltration & Pyrolysis process
 - Task abandoned due to poor material performance during irradiation testing

Impact Test Apparatus

6 ft/minute 60 ft/minute

12 ft drop

Scenarios:

6 ft/minute

60 ft/minute

12 ft drop equivalent

Channel Handle

Impact Test Results

- 6 ft/minute
 - No visible damage
- 60 ft/minute
 - Small pieces came of
- 12 ft drop
 - Part punctured withou fragmentation
 - No crack propagaton

Debris Generated

After 12 ft drop

Composite is resistant to fragmentation and crack propagation

Quench Survivability 1/2

 Test sample 4"x4"x3" heated to ~1150°C and quenched in water

Quench Survivability 2/2

Test article remained intact without cracking

- Different post test resonant acoustic response indicates micro-structural damage
 - Local layer separation suspected
 - Component maintains load bearing capability

High Temperature Steam Oxidation

 Negligible material reaction ,results consistent with literature data

MIT Irradiation Test

- Evaluate corrosion and creep
 - Obtain irradiation induced swelling data from corrosion coupons, complements ORNL dataset

Test details

- Pressurized water loop with BWR-like water chemistry
- Start with low ppb level coolant oxygen concentration, then increase to ppm level middle cycle
- Silica content in coolant monitored via Si³¹ gamma emission, coolant sample archived for verification
- Reactor started July 29th, 2013

HFIR Irradiation

Generate irradiation swelling data at several fluence and

temperatures

Temp (°C)	Damage (Displacement per atom)				
(°C)	0.03	0.1	0.4	1	6
260	Χ	X	X	X	X
280		X	X		

Project Schedule

- Irradiation at ORNL to start around January-March 2014
- Decision to proceed with 1/3 scale demonstration pending MIT corrosion test results
 - Schedule at risk if a decision can not be made early

Together...Shaping the Future of Electricity