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Core Degradation Phenomena
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<— Dominated by System Response

<« Behavior of Fuel/Core Materials Affects Accident Progression —

» Onset of core degradation processes Focus on Radionuclide
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1800

ATF: Materials With Slower Oxidation
Kinetics Offer Larger Margins of Safety

» Materials with slower oxidation kinetics in steam (~ 2 orders of magnitude or
less) delay rapid cladding degradation
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Oxidation Behavior in Steam

Advanced Fe-based alloys and SiC
materials offer significant

improvements over Zr alloys and 1200C - 8 hours - 3.4 bar _ Steam
conventional stainless steels
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Baseline: steam oxidation
8h exposures, 3.4bar (50 psig) steam

124 / N A8miglem? \ 8h, 3.4bar steam
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Conventional choices: poor at 1200°C
Only 2h in 10.3 bar (150 psig) steam

Zirc-2 0.9mm

300 um

Typical fuel cladding ~600um wall thickness
These alloys would provide no benefit in a severe accident



*‘ OAK RIDGE NATIONAL LLABORATORY  MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Screening Fe-Cr alloys: T effect
8h exposures, 3.4bar (50 psig) steam

129 '\'4Bmgrcm2"“ \
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e More Cr = more protection
« Spallation lowers 310 mass
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Screening:. best candidates
8h exposures, 3.4bar (50 psig) steam
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Al,O5 and SiO, are protective

3.4 bar steam exposures

Obvious benefits for FeCrAl
SiC widely considered for fuel and support roles
SiO, water vapor problem: less relevant at 8h

13
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Screening: Composition effects
8h exposures, 1200° C, 3.4bar steam
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 Fe-Cr binary alloys

e Oxidation 101: more Cr
makes It easier to form
protective Cr,O, layer
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Screening: Composition effects
8h exposures, 1200° C, 3.4bar steam
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e Commercial and model
e Cr+Ni beneficial

* NI not desirable for
cladding
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Screening: obvious Al benefit
8h exposures, 1200° C, 3.4bar steam
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ODS alloys benefit from Al too

8h exposures in 10.3 bar of H,-50%H,0

= pm2000
lintei'nal ondatmn ] ODM401 - . 8h 1_2.00°C .

lOpm

- Cu-plate -

';_1200°C

 PM2000 125um foil
8h 1200°C

‘ODM401 o
_ 8h 1000°C 00y e
ODS Fe-15Cr ODS FeCrAl

ODS alloys very resistant to irradiation
Most work focuses on Fe-(9-13)Cr ODS alloys
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Fundamentals of Steam Oxidation Kinetics
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MELCOR: Long-Term Station Blackout ™

Delayed Lower Head Dryout Delayed and Reduced H, Generation
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Commercial FeCrAl alloys
TGA exposures at 1200°C in Ar-50%H,0
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Hard to explain results
Need for more model alloys to clarify boundary

16
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Hot-rolled FeCrAlY model alloy plate

 No technical difficulty to hot-roll the alloys (0.032” thickness).

13-0412-06 B155Y 93%HR700°C + AC a2y 20”[11

e Cold-roll can also be done at RT
after GS control

— No intermediate annealing required
— Up to 2mil thickness
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Composition, wt%

ID Fe Cr Al Y
B105N 85.12 9.64 5.22 <0.001
B104Y 86.12 9.99 3.83 0.040
B154Y 81.18 14.86 3.85 0.012
B184Y 78.39 17.51 3.91 0.043
B183Y 79.27 17.53 2.95 0.019
B203N 77.05 20.01 2.91 <0.001
B155Y 79.87 14.98 5.02 0.033
B125Y 83.56 11.96 4.42 0.027
B134N 83.27 12.88 3.83 <0.0003
B134Y 83.02 13.01 3.94 0.007
B135Y 82.10 12.91 4.90 0.031
B154Y-2 80.99 15.03 3.92 0.035
B183Y-2 79.52 17.51 2.93 0.017
F1C5AY 85.15 10.01 4,78 0.038
F5C5AY 79.88 15.21 4.83 0.063
B154N 80.84 15.16 3.98 <0.0003

Cr content, wt%

22

Chemistry of the Alloys Studied

Table: Chemistry of the alloys

Cr vs. Al map of the alloys
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Oxidation test

\¢ HFIR test
¢ Tensile test
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&
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@

2.5

3 3.5 4 4.5 5
Al content, wt%

« Compared with commercially available FeCrAl alloys
— APMT (Fe-22Cr-5Al + Y,0, base, ODS)
— Alkrothal 14 (Fe-15Cr-4Al + Zr base)

5.5
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Model FeCrAl alloys
TGA exposures at 1200°C in Ar-50%H,0
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Exception may be few additions in K14 (no Y)
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Effect of steam on APMT oxidation
4h test in 100% steam in High T module
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Surface roughness due to weak substrate?

20
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Machined tube (

Quality of Trial FeCrAlY Tube (B155Y)

OM micrographs (cross-sectional view)

 Uniform grain structure
with spherical Fe;,Y,
particles.

* Average grain size:
~69um

Forging resulted in
slightly deformed grain
morphology, not
recrystallization.

o Successfully machined tube
form with 2” length.

oIt was drilled at the center,
EDMed inside and outside,
and then ground/polished for
making final size/surface.
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Preliminary Tensile Test Results of 22
ORNL ATF FeCrAl Alloys (15t Gen.)

Yield stress, MPa
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Uniform elongation, %
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1 1 1
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Cr content, wt%

25

Sub-sized specimen
(after testing at RT)

10mm

First attempt was made with non-controlled grain size specimens (~250-500
um).

0 YS exceeded min. requirement of Zircaloy 2 or 4, at both RT and 300°C.
o Higher Cr is good for ductility, but lowers YS at 300°C.

Optimization of the grain size (~30-50 um) is currently in progress.

Further property improvement via solution/precipitate strengthening is
planned, as the 2" generation ORNL ATF FeCrAl alloys.



% OAK RIDGE NATIONAL LLABORATORY  MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Welding trials

Seal Weld Cap
Fill hole
Circumferential
Weld

Claddlng Fuel Pellet

Top Cap Assembly

23

 Understand the mechanical properties
of weldments made in model FeCrAlY
alloys

— 3 alloys selected with varying Cr and
Al content

— 2 welding types tested
* E-beam: initial screening
 Laser: in-depth investigation

— Demonstrate weld of top and bottom
caps for cladding

Nominal, wt%
Cr Al Y
B125Y 12 4.5 0.15
B154Y-2 15 4 0.15
B183Y-2 17.5 3 0.15
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1. E-beam welding of FeCrAlY alloys
resulted in defect free welds

2. Laser welding lead to decreased
strength levels and increased ductility
levels

— Neck and fracture occurred in fusion
zone

— No evidence of welding-caused
embrittlement

— B125Y alloy has the best strength level
after welding compared to other alloys

3. FeCrAlY alloys are suitable for
complex geometry weldments

Summary of FeCrAlY Welding Trials

24

Good weldability
of unirradiated

— FeCrAlY model
alloys
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HFIR Irradiation Design and PIE

Temperature
Monitor

Load

Tensile
Specimen

Capsule
(cross section view)

» 4 ORNL ATF candidate + 2 commercial alloys to be inserted to HFIR
» Varying Cr content across selected alloys
e Planned PIE:

» Tensile tests at RT, 320 °C, & accident temperature to determine
mechanical performance

o SANS to determine o’ volume fraction

» Analytical electron microscopy from non-gauge section of tensile
specimens

25

:|> FY2013

—

Low Dose: FY2014

— High Dose: FY2015
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Neutronics and Economics of Steel Clad

Two strategies to make up for neutron absorption in the cladding and maintain identical cycle
lengths to Zr clad:

* Reduce clad thickness (steel is stronger and more oxidation resistant)

 Increase 2*U enrichment
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-0.02

=

3 500 - 10.04

2] S

Q ° .
< oz Results in
'E > 15-25%
> N Increase in
% Fuel Cost
O

350
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0. 04
0.05
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300

235 Enrichment [%0]
Difference In End Of Life Reactivity SS Clad Vs Zr Clad
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Summary/Future Work

 Current ORNL focus on optimizing FeCrAl for cladding
— Welding and tensile properties acceptable
— Initial Cr/Al selected based on accident conditions
— Need ~300° C water corrosion data
— Irradiation data coming
— Kanthal AF tubing made by LANL: burst test
— Fe-15Cr-15Al+Y ready for ATR irradiation

 Other teams developing ATF candidates
— Range of properties need to be compared/ranked

27



backups
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Severe accident test station

National facility for testing new cladding concepts
- multiple “modules”
- steam to 1700°C, typically 1-10 cm/s

- pressure to 30 bar standard p
LOCA '

| “Keiser rig” ,
1|gh P/T 1500 C |

~1700°C
in- & ex-cell units

Rubotherm
TGA

{ highT

29
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Strength and Creep Behavior of Some
Candidate Cladding Materials
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strengths of candidate fuel cladding materials
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Consideration from Phase Diagrams

Temperature, °C

= No sigma formation between 10-20Cr, but a-Cr.

Temperature, °C

Fe-Cr pingry .

200
18631
18004 = L
1600+ 3
— . Bt
1400 13w
(Cr,Fe) = A
1200 § / w
u o
10004 2 w b
ki 7
a0 O g2
800 g
~ y / -
/
6003 ~ { / N
o L
== 520
400 L ~ E
//’ N
/ N
2004 \
\
e
T T T T T T T T T
0 10 20 30 40 50 60 70 80 20 100
Cr at. % Fe

1600

Fe-Y binary

\
-
oo e
=
1500 o
1:’\\ 1478,
o\
L\ 1400 y
14003= N\ 7
n394 \/ |\ L 4 |
1350 | | 1285 y
1300 (| T §
13004 L(’_r‘\\ ( \\ b ‘_
1280 T ¥ {1260 b /
- || \ 4 |
12004 < | \ / E
- | \ /
© | ‘ \ I
E 3 % | 1125 h / |
11003 | g IE
! _ |
e < /
10004 L N y ‘ 3
t“ A ‘
912 7| 900 A | 3
900 et 2 \
FE - é| g & =
o @ [ =
[ w w |
8004 - B >|> > >~—-—\-
|
oW T T T T T T T T T
0 10 20 30 40 50 60 70 80 50 100
Fe at. % Y

Al

Fe-Cr-Al ternary
Cr 1000°C

CrAl; hex

31

(1273K)
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» Ferrite single-phase at around 1000°C

(hot-rolling temperature).

= Little Y solubility in Fe, Fe,;Y, may form (but very little).
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