# Coordinated Aggregation of Distributed Energy Resources

Alejandro Dominguez-Garcia
Univ of Illinois

Pravin Varaiya & Kameshwar Poolla

UC Berkeley

August 6, 2013

## Our Research Group

Students | Anand Subramanian, Justin Hughes

Jared Porter, Zach Lerner

Post-docs | Ashutosh Nayyar

He Hao, Borhan Sanandaji

Faculty | Alejandro Dominguez-Garcia

Kameshwar Poolla, Pravin Varaiya

#### **CERTS** Research Activities

- Network case of Risk-Limiting Dispatch
- Improved Load Forecasting with fine-grain measurements
- Coordinated Aggregation of Distributed Resources

# Risk Limiting Dispatch

# Risk Limiting Dispatch (RLD)

- Main Idea: exploit recourse opportunities
  - purchase reserves in a sequence of forward markets (one day, six hours, one hour, 5 minutes ahead of delivery time)
- Key Issue: Information-cost trade-off
  - better forecasts available closer to delivery time
  - increased price risk closer to delivery time
- Objective: minimize expected cost of reserves + imbalance penalty.
- Decision at each market:
  - is based on all available information (from the current and previous markets)
  - takes into account the statistics of future information and future recourse decisions

#### RLD - Previous Result



- lacksquare  $s_i$  forward purchase or sale made at market time  $t-t_i$
- Decisions based on information Y<sub>i</sub>
- $\blacksquare \ \mathsf{Cost} = \mathbb{E}\{\mathsf{energy} + \mathsf{reserve} \ \mathsf{capacity} + \mathsf{imbalance} \ \mathsf{penalty}\}$

#### Theorem

Single bus case. Optimal decision  $s_i$  satisfies threshold rule:

$$s_i + \sum_{j < i} s_j \in [\phi_{i+}, \phi_{i-}]$$

#### RLD - New Results

Network case: n buses, m transmission lines



- Transmission constraints and flows modeled with DC power flow
- $\mathbf{s}_i = (s_i^1, s_i^2, \dots, s_i^n)$  is the purchase *decision vector* at market time  $t t_i$

#### Theorem

Optimal decision vector  $\mathbf{s}_i$  still satisfies threshold rule:

$$\mathbf{s}_i = \Phi_i - \sum_{i < i} \mathbf{s}_j$$
 where  $\Phi_i$  is the n-dimensional threshold vector

# Load Forecasting

#### Problem Formulation

- Accurate load forecasts are important
  - Load management and infrastructure investments
  - Decrease reserve requirements
- AMI is widespread can we use this data to improve forecasts?
- Problem setup:
  - AMI time-series  $y^k(t), k = 1, \dots, N$
  - Aggregate power time-series  $p(t) = \sum_{k} y^{k}(t)$
- Compare two approaches:
  - Traditional: forecast p(t + T) given  $p(s), s \le t$
  - AMI based: forecast p(t+T) given  $y^k(s), s \leq t$
- Modeling method:
  - model each time-series as baseline + ARMAX for residual
  - Baseline b(t) from intelligent averaging
  - ARMAX model parameters from traditional system ID

## Results: Synthetic Data

- Two AMI sites: different nominal, residual is first order ARX
- Example shows AMI data can improve prediction



# Preliminary Results: Real Data

- 18 buildings selected from LoCal project at UC Berkeley
  - Test forecasting for 0.25h, 1h, 6h prediction horizon
  - AMI prediction does not show improvements



- Problem: too much noise in data, makes modeling  $y^k(t)$  difficult
- Need to understand noise sources in building level data (chiller events, abrupt load changes)

# Aggregate Flexibility

# A Paradigm Shift

- Today: tailor generation to meet random load
- Tomorrow: tailor load to meet random generation
- Enabling ingredient: flexible loads
  - residential HVAC
  - commercial HVAC
  - deferrable appliance loads
  - electric vehicles
- Flexible loads will enable deep renewable penetration without large increases in reserves

#### The Sound-bite

#### "Flexible loads can absorb variability in renewable generation"

- Devil is in the details, and the sound-bite is vague ...
- What variability?
  - variability in wind or rooftop solar?
  - what time scales? wind ramps or routine fluctuations?
- What product can be provided?
  - load-following capacity?
  - frequency regulation ancillary service?
- Architecture?
  - direct load control or load control through price proxies?
  - degree of decentralization?
  - hardware infrastructure?
- Where is the economic value?

# An Example of What is Possible

■ Direct load control: 60,000 diverse AC units

```
Control u(t) = \text{common setpoint change}
Measurements P(t) = \text{aggregate power}
Objective P(t) = \text{tracks command } r(t)
high freq part of power from wind farm
```

■ Result:  $\pm 0.1^{\circ}C$  setpoint changes can track high freq part of w(t)!

Callaway, *Energy Conversion and Management*, 2009 Flexibility in TCL's can firm wind generation

#### Results



- $P(t) \approx w(t)$
- Tracking error  $\approx 1\%$
- Set-point changes  $\approx 0.1^{\circ}C$
- Proof-of-concept result
- Two key problems with implementation
  - measuring agg power
  - defining nom power

Callaway, Energy Conversion and Management, 2009

#### Two Central Problems

- Consider collection of flex loads
- ex ante Modeling Aggregate Flexibility
  - characterize the set of admissible power profiles
     i.e. profiles that meet the needs of flex loads
  - want a simple, portable model
  - System Operator uses model for procuring AS or load following
- run-time Control Algorithms
  - aggregator or cluster manager controls flex loads
  - allocation available generation to loads
  - allocation must be causal
  - not traditional control, more like CS scheduling

#### Two Business Cases

- Selling aggregate flexibility capacity as an AS
  - ex: residential HVAC
  - loads pay fixed price per MW
  - flexibility is sold as a regulation service
- Using aggregate flexibility to minimize operating costs
  - ex: shopping mall EV charging
  - loads pay low-cost bulk power + expensive reserves
  - flexibility can minimize reserve cost

# Aggregate Flexibility

- Collection of flexible loads, indexed by k
  - For each load, define a nominal power profile  $P_k^o(t)$
  - Many perturbations e from nominal satisfy the load

$$\mathbb{E}_k = \{e : e + P_k^o \text{ satisfies load } k\}$$

- Aggregate nominal power  $n(t) = \sum_k P_k^o$
- Aggregate flexibility

$$\mathbb{E} = \sum_{k} \mathbb{E}_{k}$$

■ Key problem: characterize E

# Generalized Electricity Storage

■ Models a set of power profiles

$$u(t) \in Batt(\phi) \iff \left\{ egin{array}{ll} u(t) \in [-m^-, m^+] \\ \dot{x} = -ax + u \\ x(0) = \xi \implies x(t) \in [-C^-, C^+] \end{array} \right.$$

#### Parameters $\phi$

| parameter  | meaning                      |
|------------|------------------------------|
| $m^-, m^+$ | discharge/charge rate limits |
| $C^-, C^+$ | up/down capacity             |
| а          | dissipation                  |
| ξ          | init condn                   |

Effective capacity

$$C_{eff}^+ = \min\{C^+, m^+/a\}, \quad C_{eff}^- = \min\{C^-, m^-/a\}$$

■ Compact, portable model

# Result Summary

- Consider collection of flex loads: TCLs, EVs, etc
- Aggregate flexibility can be well modeled as a stochastic battery:

$$Batt(\phi_1) \subseteq \mathbb{E} \subseteq Batt(\phi_2)$$

- Battery parameters are random processes
  - depend on exogenous variables
  - ex: ambient temp, arrival/departure rates, charging needs, etc
- For TCLs:
  - battery must have dissipation
  - gap between  $\phi_1, \phi_2$  because of diversity
  - agg flex is small at low  $\theta_a$  because no participation
  - agg flex is small at high  $\theta_a$  because short-cycling

## Result Summary ...

Consider sufficient model

$$Batt(\phi_1) \subseteq \mathbb{E}$$

■ Scheduling problem:

Given  $u \in Batt(\phi_1)$ , allocate u to flex loads

$$-u=\sum_{k}e_{k}, \quad e_{k}\in\mathbb{E}_{k}$$

- algorithms must be causal
- For TCLs, proportional allocation works
- For EVs, without rate limits, EDF, LLF, etc work
- For EVs with rate limits, scheduling algorithms do not exist

# Aggregate Flexibility from TCLs

#### Some Related work

- Callaway, Energy Conversion and Management 2009
- Koch, Zima, Andersson, *IFAC PP+PSC*, 2009
- Papavasiliou, Oren, PES 2010
- Galus, la Fauci, Andersson, PES 2010
- Ilic, Xie, Joo, IEEE TPS 2011
- Mathieu, Kamgarpour, Lygeros, Callaway, ECC 2013
- Koch, Mathieu, Callaway, IEEE TPS, 2013
- Meyn, Barooah, Busic, Ehren, preprint, 2013

#### Comments:

- Markov chain models for aggregate
- Population-bin-transition model
- SO imposes tight audit requirements on AS provision

# Simple Model of a TCL (Cooling Load)

■ Dead-band model

$$\dot{\theta} = egin{cases} -rac{1}{CR}( heta - heta^a + P^mR) + w & ext{ON state} \\ -rac{1}{CR}( heta - heta^a) + w & ext{OFF state} \end{cases}$$

State-switching boundaries

$$\overline{\theta} = \theta^r + \Delta, \quad \underline{\theta} = \theta^r - \Delta$$

- Control input = setpoint  $\theta_r$
- Process disturbance w for model uncertainty
- Simplified model, ignoring many details

| $\overline{C}$ | thermal capacitance       | 2 kWh/°C               |
|----------------|---------------------------|------------------------|
| R              | thermal resistance        | 2 °C/kW                |
| $P^{m}$        | power consumption when ON | 5.6 kW                 |
| Δ              | deadband                  | $1~^{\circ}\mathrm{C}$ |

# Even Simpler Model

Continuous-power model

$$\dot{\theta} = -\frac{1}{RC}(\theta - \theta_a + Re(t)) + w$$

- Control input e(t) is power supplied to TCL
- − Constraint:  $e(t) \in [0, P^m]$
- We use this model for analysis
- Use better dead-band model for simulations
- Need to show that for a large population, aggregate behavior of TCLs is same under either model

# Nominal Average Power

• Average power consumption to maintain  $\theta(t) = \theta_r$ 

$$P^o = \frac{\theta_a - \theta_r}{R}$$

- Nominal average power P°
  - function of HVAC, ambient temp, set-point
  - slowly-varying random process
- Measuring *P*<sup>o</sup> is critical: firmware solution
  - know  $\theta_r$  from thermostat
  - measure  $\theta(t)$
  - run-time ID of  $R, \theta_a$

# Aggregate Flexibility – Diverse TCLs

#### Theorem

(a)  $Batt(\phi_1) \subset \mathbb{E} \subset Batt(\phi_2)$ 

| parameter                        | $\phi_1$                                                                            | $\phi_2$                                        |
|----------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------|
| dissipation                      | $\frac{1}{N}\sum_k a_k$                                                             | $\frac{1}{N}\sum_{k}a_{k}$                      |
| charge rate limit n <sup>+</sup> | $\sum_{k} (P_{k}^{m} - P_{k}^{o})$                                                  | $\sum_{k} (P_{k}^{m} - P_{k}^{o})$              |
| discharge rate limit             | $n^+ \min_k \frac{P_k^o}{P_k^m - P_k^o}$                                            | $\sum_k P_k^o$                                  |
| capacity                         | $n^+ \min_k \frac{\hat{C}_k \Delta_k}{P_k^o(1+\frac{ \sigma-\sigma_k }{\sigma_k})}$ | $\sum_{k} (1 + \frac{ a-a_k }{a}) C_k \Delta_k$ |

(b) If  $u \in Batt(\phi_1)$ , proportional allocation keeps  $\theta_k(t)$  in deadband.

No diversity 
$$\implies Batt(\phi_1) = Batt(\phi_2)$$

Aggregate flexibility of TCLs can be modeled as a stochastic battery

# How Tight are the Battery Models?



# **Priority Stacks**



# Priority Stack Controller



- turn OFF colder units to provide power
- turn ON warmer units to absorb power
- no-short-cycling constraints

#### Control Architecture



- Nominal aggregate power  $n(t) = \sum_k P_k^o$ Contractually agreed on with SO when delivering freq regulation
- Two key problems:
  - Measuring aggregate power P(t)
  - Computing nominal aggregate power n(t)

### Control Architecture Details

- Centralized control, sampling rate 0.25 Hz
- Each TCL:
  - 1 during installation calibration of  $P^m$  (hopefully  $\approx$  const)
  - 2 measure  $\theta_k(t), \theta^r$  (already available)
  - 3 estimate  $R, C, \theta^a, \Delta$  (standard system ID)
  - 4 compute and transmit to cluster manager

$$P_k^o, P_k(t)$$
, priority =  $\pi_k(t)$ 

- Cluster manager:
  - 1 computes nominal aggregate power n(t)
  - 2 computes aggregate power P(t)
  - 3 updates priority stack
  - 4 receives AGC command, computes control action
  - 5 broadcasts control action to TCLs

#### Simulations

#### ■ Heterogenous Population of 1000 TCLs

- nominal power = 2.4 MW
- peak power (all units ON) = 5.6 MW
- randomized model parameters  $R, C, P^m, a$
- common ambient temperature  $\theta_a$
- synthetic process noise
- no-short-cycling constraint

#### ■ Stochastic Battery Model

- charge-rate constraints [-2.4, 3.2] MW
- capacity 0.8 MWh
- dissipation time const 4 h

# **Excellent Tracking of AGC Command**



AGC command within stochastic battery limits

# Asking for too much power!



AGC command exceeds stochastic battery rate limits

# Asking for too much capacity!



AGC command within stochastic battery rate limits, but ...

# Asking for too much capacity!



AGC command exceeds stochastic battery capacity limits

## Summary

- Residential HVACs large capacity bcz units can be phase shifted
- Commercial HVACs small capacity bcz of efficiency droop in chillers
- Plenty of flexibility
  - San Diego, summer months
  - 25% participation from residential AC
  - Agg flexibility offers 2 × currently needed regulation
- Battery models can be used to screen for participation
  - cluster similar TCLs into battery model
  - − good TCLs: large  $\Delta$ ,  $P^m$
- The gaming issue!

# Aggregate Flexibility from EVs

# Modeling Electric Vehicles

- Simple model
  - arrival a, departure d, needs energy E, max rate m

$$\int_a^d p(t)dt = E, \quad 0 \le p(t) \le m$$

- Ignoring many details: range for E, quantized power levels, minimum rate during charging, ...
- **Each EV load is a task parametrized by** (a, d, E, m)
- EV announces task parameters on arrival
- Task are pre-emptive: can interrupt and resume servicing else problems become bin packing (NP Hard)

## Some Simple Concepts

■ Energy state of task at time *t*:

$$e(t) = E - \int_{a}^{t} p(\tau)d\tau$$
 = remaining energy needed

- Task is active at time t if  $a \le t \le d$
- $\mathbb{A}(t) = \text{set of all active tasks at time } t$
- Nominal load profile n(t)
  - Service task at a constant rate E/(d-a)
  - Don't exploit flexibility

## Adequacy

- Many power profiles can meet EV needs
- Available generation g(t)
- lacksquare  $\sigma$  allocates available generation g(t) to tasks
  - $\sigma$  is causal if allocations at time t depend only on: info from past tasks , past generation
  - -g(t) is adequate if  $\exists \sigma$  that completes all tasks
  - -g(t) is exactly adequate if adequate + no surplus

## Agenda:

- When is g exactly adequate?
- If it is, what policy  $\sigma$  will complete the tasks?
- If it isn't, we have at times shortfall/surplus generation What are the minimum energy reserves we need?

# Common Scheduling Policies

- Build priority stack
- Earliest Deadline First [EDF]: Prioritize tasks by deadline d
- Least Laxity First [LLF]: Prioritize tasks by laxity  $\lambda$

Laxity 
$$\lambda(t) = \overbrace{\left(d_i - t\right)}^{\text{time remaining}} - \overbrace{\left(e_i(t)/m_i\right)}^{\text{time required}}$$

- Very easy to implement!
- Inspired by Processor-Time-Allocation research [ex: Liu ('73), Dertouzos ('74)]

# Aggregate Flexibility of EVs

## Theorem

#### Assume no rate limits

(a) Agg flexibility  $\mathbb{E} = Batt(\phi)$ .

Battery has no dissipation, no rate limits, and time-varying capacities:

$$C^{-} = \sum_{i \in \mathbb{A}(t)} E^{i} \frac{t - a^{i}}{d^{i} - a^{i}} \quad C^{+} = \sum_{i \in \mathbb{A}(t)} E^{i} \frac{d^{i} - t}{d^{i} - a^{i}}$$

- (b) If  $u \in Batt(\phi)$ , EDF scheduling satisfies all tasks.
  - $x(t) > C^+ \implies$  have surplus, need down-regulation
  - $x(t) < -C^ \implies$  have shortfall, need up-regulation

Aggregate flexibility of EVs can be modeled as a stochastic battery

## Intuition

- Flexibility captured by battery capacity  $[-C^-(t), C^+(t)]$ 
  - time-varying
  - depends only on active task info
  - easily computed causally from  $\mathbb T$
  - ex: Bernoulli arrival of identical tasks

$$C^- = C^+ \approx 0.5 \sum_{i \in \mathbb{A}(t)} E^i = C(t)$$

- Aggregate Flexibility C(t)
  - -C(t) = half energy needs of active tasks at time t
  - keep cumulative deviation x in sleeve  $\pm C(t)$

# Minimum Energy Reserve Policy

- Suppose available generation is not exactly adequate
  - shortfall  $\rightarrow$  up-regulation  $r^{up}(t)$
  - surplus  $\rightarrow$  need down-regulation  $r^{down}(t)$
- How much reserves are needed? How to schedule in real-time?

## Theorem

Define the random process y(t) with y(0) = 0 and

$$dy = \left\{ egin{array}{ll} v(t) & \textit{if } |y(t)| \leq C \\ 0 & \textit{else} \end{array} \right.$$

The minimum energy reserve policy to complete the tasks is

$$r^{up}(t) = (y(t) + v(t) - C)^{+}$$
  
 $r^{down}(t) = (-C - y(t) - v(t))^{+}$ 

## Illustration



## Illustration



## ex: Green Garage

#### Car statistics

```
Average EV arrivals
Average time parked
Average charge rate
Nominal load n(t)
50 \text{ per hour}
h \text{ hours}
4 \text{ kW}
\approx 50 \times h \times 4 \text{ kW}
```

## Aggregate Flexibility

Average energy needed at any time

save num of cars charge rate 
$$50h \times 4 \times h = 200h^2$$
 kWh

- Cars behave like nominal + stochastic battery:
- Battery capacity  $\approx \pm 100 \, h^2$  kWh

# What happens with Rate Limits?

#### Theorem

Assume rate limits. Suppose g is adequate. Causal scheduling policy may not exist.

- Must use forecasts of generation g(t) and loads  $\mathbb T$
- Model predictive control works well, but may be overkill
- Simulation studies reveal
  - Reserve energy: all scheduling policies are comparable
  - Reserve capacity: MPC is better
  - In many metrics, EDF/LLF work very well for pprox 100 EVs

A. Subramanian et al, [ACC 2012, CDC 2012]

## Looking Forward ...

- Computing battery models
  - Deferrable appliance loads?
  - Commercial buildings?
  - Can we use data from AMIs directly to build battery models?
- Regulation resources: conventional generation, flex loads, storage
  - Differentiated by reliability, duration, performance
  - Different prices
- Generalized regulation procurement
  - What resource mix should SO use?
  - Network case?
  - Connections to RLD?
- Incentivizing Participation
  - Discounts? Lotteries?