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CERTS Research Activities

� Network case of Risk-Limiting Dispatch

� Improved Load Forecasting with fine-grain measurements

� Coordinated Aggregation of Distributed Resources
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Risk Limiting Dispatch
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Risk Limiting Dispatch (RLD)

� Main Idea: exploit recourse opportunities

− purchase reserves in a sequence of forward markets
(one day, six hours, one hour, 5 minutes ahead of delivery time)

� Key Issue: Information-cost trade-off

− better forecasts available closer to delivery time
− increased price risk closer to delivery time

� Objective: minimize expected cost of reserves + imbalance penalty.

� Decision at each market:

− is based on all available information (from the current and previous
markets)

− takes into account the statistics of future information and future
recourse decisions

Dominguez-Garcia, Poolla, Varaiya CERTS Review 2013 2 of 45August 6, 2013 2 / 45



RLD – Previous Result

� si forward purchase or sale made at market time t − ti

� Decisions based on information Yi

� Cost = E{energy + reserve capacity + imbalance penalty}

Theorem
Single bus case. Optimal decision si satisfies threshold rule:

si +
∑
j<i

sj ∈ [φi+, φi−]
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RLD – New Results
Network case: n buses, m transmission lines

s1
i

s2
i

s3
i

s4
i

� Transmission constraints and flows modeled with DC power flow

� si = (s1
i , s

2
i , . . . , s

n
i ) is the purchase decision vector at market time t − ti

Theorem
Optimal decision vector si still satisfies threshold rule:

si = Φi −
∑
j<i

sj where Φi is the n-dimensional threshold vector
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Load Forecasting
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Problem Formulation

� Accurate load forecasts are important

− Load management and infrastructure investments
− Decrease reserve requirements

� AMI is widespread – can we use this data to improve forecasts?

� Problem setup:

− AMI time-series yk (t), k = 1, · · · ,N
− Aggregate power time-series p(t) =

∑
k y

k (t)

� Compare two approaches:

− Traditional: forecast p(t + T ) given p(s), s ≤ t
− AMI based: forecast p(t + T ) given yk (s), s ≤ t

� Modeling method:

− model each time-series as baseline + ARMAX for residual
− Baseline b(t) from intelligent averaging
− ARMAX model parameters from traditional system ID
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Results: Synthetic Data

� Two AMI sites: different nominal, residual is first order ARX

� Example shows AMI data can improve prediction
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Preliminary Results: Real Data

� 18 buildings selected from LoCal project at UC Berkeley

− Test forecasting for 0.25h, 1h, 6h prediction horizon
− AMI prediction does not show improvements
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� Problem: too much noise in data, makes modeling yk (t) difficult

� Need to understand noise sources in building level data (chiller events,
abrupt load changes)

Dominguez-Garcia, Poolla, Varaiya CERTS Review 2013 7 of 45August 6, 2013 7 / 45



Aggregate Flexibility
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A Paradigm Shift

� Today: tailor generation to meet random load

� Tomorrow: tailor load to meet random generation

� Enabling ingredient: flexible loads

− residential HVAC
− commercial HVAC
− deferrable appliance loads
− electric vehicles

� Flexible loads will enable deep renewable penetration
without large increases in reserves
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The Sound-bite

“Flexible loads can absorb variability in renewable generation”

� Devil is in the details, and the sound-bite is vague ...

� What variability?

− variability in wind or rooftop solar?
− what time scales? wind ramps or routine fluctuations?

� What product can be provided?

− load-following capacity?
− frequency regulation ancillary service?

� Architecture?

− direct load control or load control through price proxies?
− degree of decentralization?
− hardware infrastructure?

� Where is the economic value?
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An Example of What is Possible

� Direct load control: 60,000 diverse AC units

Control u(t) = common setpoint change
Measurements P(t) = aggregate power

Objective P(t) tracks command r(t)
high freq part of power from wind farm

� Result: ±0.1◦C setpoint changes can track high freq part of w(t)!

Callaway, Energy Conversion and Management, 2009
Flexibility in TCL’s can firm wind generation
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Results

� P(t) ≈ w(t)

� Tracking error ≈ 1%

� Set-point changes ≈ 0.1◦C

� Proof-of-concept result

� Two key problems with
implementation

− measuring agg power
− defining nom power

Callaway, Energy Conversion and Management, 2009
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Two Central Problems

� Consider collection of flex loads

� ex ante Modeling Aggregate Flexibility

− characterize the set of admissible power profiles
i.e. profiles that meet the needs of flex loads

− want a simple, portable model
− System Operator uses model for procuring AS or load following

� run-time Control Algorithms

− aggregator or cluster manager controls flex loads
− allocation available generation to loads
− allocation must be causal
− not traditional control, more like CS scheduling
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Two Business Cases

� Selling aggregate flexibility capacity as an AS

− ex: residential HVAC
− loads pay fixed price per MW
− flexibility is sold as a regulation service

� Using aggregate flexibility to minimize operating costs

− ex: shopping mall EV charging
− loads pay low-cost bulk power + expensive reserves
− flexibility can minimize reserve cost
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Aggregate Flexibility

� Collection of flexible loads, indexed by k

− For each load, define a nominal power profile Po
k (t)

− Many perturbations e from nominal satisfy the load

Ek = {e : e + Po
k satisfies load k}

� Aggregate nominal power n(t) =
∑

k P
o
k

� Aggregate flexibility

E =
∑

k

Ek

� Key problem: characterize E
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Generalized Electricity Storage

� Models a set of power profiles

u(t) ∈ Batt(φ) ⇐⇒

 u(t) ∈ [−m−,m+]
ẋ = −ax + u
x(0) = ξ =⇒ x(t) ∈ [−C−,C+]

Parameters φ

parameter meaning
m−,m+ discharge/charge rate limits
C−,C+ up/down capacity

a dissipation
ξ init condn

� Effective capacity

C+
eff = min{C+,m+/a}, C−eff = min{C−,m−/a}

� Compact, portable model
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Result Summary

� Consider collection of flex loads: TCLs, EVs, etc

� Aggregate flexibility can be well modeled as a stochastic battery:

Batt(φ1) ⊆ E ⊆ Batt(φ2)

� Battery parameters are random processes

− depend on exogenous variables
− ex: ambient temp, arrival/departure rates, charging needs, etc

� For TCLs:

− battery must have dissipation
− gap between φ1, φ2 because of diversity
− agg flex is small at low θa because no participation
− agg flex is small at high θa because short-cycling
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Result Summary ...

� Consider sufficient model

Batt(φ1) ⊆ E

� Scheduling problem:
Given u ∈ Batt(φ1), allocate u to flex loads

− u =
∑

k

ek , ek ∈ Ek

− algorithms must be causal

� For TCLs, proportional allocation works

� For EVs, without rate limits, EDF, LLF, etc work

� For EVs with rate limits, scheduling algorithms do not exist
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Aggregate Flexibility
from TCLs
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Some Related work

� Callaway, Energy Conversion and Management 2009

� Koch, Zima, Andersson, IFAC PP+PSC, 2009

� Papavasiliou, Oren, PES 2010

� Galus, la Fauci, Andersson, PES 2010

� Ilic, Xie, Joo, IEEE TPS 2011

� Mathieu, Kamgarpour, Lygeros, Callaway, ECC 2013

� Koch, Mathieu, Callaway, IEEE TPS, 2013

� Meyn, Barooah, Busic, Ehren, preprint, 2013

Comments:

− Markov chain models for aggregate

− Population-bin-transition model

− SO imposes tight audit requirements on AS provision
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Simple Model of a TCL (Cooling Load)

� Dead-band model

θ̇ =

{
− 1

CR (θ − θa + PmR) + w ON state

− 1
CR (θ − θa) + w OFF state

� State-switching boundaries

θ = θr + ∆, θ = θr −∆

− Control input = setpoint θr

− Process disturbance w for model uncertainty
− Simplified model, ignoring many details

C thermal capacitance 2 kWh/◦C
R thermal resistance 2 ◦C/kW
Pm power consumption when ON 5.6 kW
∆ deadband 1 ◦C
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Even Simpler Model

� Continuous-power model

θ̇ = − 1

RC
(θ − θa + Re(t)) + w

− Control input e(t) is power supplied to TCL
− Constraint: e(t) ∈ [0,Pm]

� We use this model for analysis

� Use better dead-band model for simulations

� Need to show that for a large population,
aggregate behavior of TCLs is same under either model
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Nominal Average Power

� Average power consumption to maintain θ(t) = θr

Po =
θa − θr

R

� Nominal average power Po

− function of HVAC, ambient temp, set-point
− slowly-varying random process

� Measuring Po is critical: firmware solution

− know θr from thermostat
− measure θ(t)
− run-time ID of R, θa
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Aggregate Flexibility – Diverse TCLs

Theorem

(a) Batt(φ1) ⊂ E ⊂ Batt(φ2)

parameter φ1 φ2

dissipation 1
N

∑
k ak

1
N

∑
k ak

charge rate limit n+
∑

k (Pm
k − Po

k )
∑

k (Pm
k − Po

k )

discharge rate limit n+ mink
Po

k

Pm
k −Po

k

∑
k P

o
k

capacity n+ mink
Ck ∆k

Po
k (1+

|a−ak |
ak

)

∑
k (1 + |a−ak |

a )Ck ∆k

(b) If u ∈ Batt(φ1), proportional allocation keeps θk (t) in deadband.

No diversity =⇒ Batt(φ1) = Batt(φ2)

Aggregate flexibility of TCLs can be modeled as a stochastic battery
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How Tight are the Battery Models?
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Priority Stacks

Hot

Cold

Hot

Cold

ON Stack
Sorted by θk (t)− θ

OFF Stack
Sorted by θ − θk (t)

turnon

co
o

l
d

o
w

n

turn off

w
ar

m
u

p
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Priority Stack Controller

Hot

Units available for
down-regulation

Units available for
up-regulation

Cold

ON Stack
Sorted by θk (t)− θ

OFF Stack
Sorted by θ − θk (t)

no-short-cycling
constraint

� turn OFF colder units to provide power

� turn ON warmer units to absorb power

� no-short-cycling constraints
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Control Architecture

Collection
of TCLs

Priority Stack
Controller

Nominal
Power n(t)

System Operator
AGC Command e(t)

+−

Aggregate
Power P(t)

−+

� Nominal aggregate power n(t) =
∑

k P
o
k

Contractually agreed on with SO when delivering freq regulation

� Two key problems:

− Measuring aggregate power P(t)
− Computing nominal aggregate power n(t)
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Control Architecture Details

� Centralized control, sampling rate 0.25 Hz

� Each TCL:

1 during installation calibration of Pm (hopefully ≈ const)
2 measure θk (t), θr (already available)
3 estimate R,C , θa,∆ (standard system ID)
4 compute and transmit to cluster manager

Po
k ,Pk (t), priority = πk (t)

� Cluster manager:

1 computes nominal aggregate power n(t)
2 computes aggregate power P(t)
3 updates priority stack
4 receives AGC command, computes control action
5 broadcasts control action to TCLs
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Simulations

� Heterogenous Population of 1000 TCLs

− nominal power = 2.4 MW
− peak power (all units ON) = 5.6 MW
− randomized model parameters R, C , Pm, a
− common ambient temperature θa

− synthetic process noise
− no-short-cycling constraint

� Stochastic Battery Model

− charge-rate constraints [−2.4, 3.2] MW
− capacity 0.8 MWh
− dissipation time const 4 h
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Excellent Tracking of AGC Command
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Asking for too much power!
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Asking for too much capacity!
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AGC command within stochastic battery rate limits, but ...
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Asking for too much capacity!
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Summary

� Residential HVACs – large capacity bcz units can be phase shifted

� Commercial HVACs – small capacity bcz of efficiency droop in chillers

� Plenty of flexibility

− San Diego, summer months
− 25% participation from residential AC
− Agg flexibility offers 2 × currently needed regulation

� Battery models can be used to screen for participation

− cluster similar TCLs into battery model
− good TCLs: large ∆,Pm

� The gaming issue!
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Aggregate Flexibility
from EVs
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Modeling Electric Vehicles

� Simple model

− arrival a, departure d , needs energy E , max rate m∫ d

a

p(t)dt = E , 0 ≤ p(t) ≤ m

− Ignoring many details: range for E , quantized power levels, minimum
rate during charging, ...

� Each EV load is a task parametrized by (a, d ,E ,m)

� EV announces task parameters on arrival

� Task are pre-emptive: can interrupt and resume servicing
else problems become bin packing (NP Hard)
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Some Simple Concepts

� Energy state of task at time t:

e(t) = E −
∫ t

a

p(τ)dτ = remaining energy needed

� Task is active at time t if a ≤ t ≤ d

� A(t) = set of all active tasks at time t

� Nominal load profile n(t)

− Service task at a constant rate E/(d − a)
− Don’t exploit flexibility
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Adequacy

� Many power profiles can meet EV needs

� Available generation g(t)

� σ allocates available generation g(t) to tasks

− σ is causal if allocations at time t depend only on:

info from past tasks , past generation

− g(t) is adequate if ∃ σ that completes all tasks
− g(t) is exactly adequate if adequate + no surplus

� Agenda:

− When is g exactly adequate?
− If it is, what policy σ will complete the tasks?
− If it isn’t, we have at times shortfall/surplus generation

What are the minimum energy reserves we need?
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Common Scheduling Policies

� Build priority stack

� Earliest Deadline First [EDF]: Prioritize tasks by deadline d

� Least Laxity First [LLF]: Prioritize tasks by laxity λ

Laxity λ(t) =

time remaining︷ ︸︸ ︷
(di − t) −

time required︷ ︸︸ ︷
(ei (t)/mi )

� Very easy to implement!

� Inspired by Processor-Time-Allocation research
[ex: Liu (’73), Dertouzos (’74)]
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Aggregate Flexibility of EVs

Theorem
Assume no rate limits

(a) Agg flexibility E = Batt(φ).
Battery has no dissipation, no rate limits, and time-varying capacities:

C− =
∑

i∈A(t)

E i t − ai

d i − ai
C+ =

∑
i∈A(t)

E i d
i − t

d i − ai

(b) If u ∈ Batt(φ), EDF scheduling satisfies all tasks.

� x(t) > C+ =⇒ have surplus, need down-regulation

� x(t) < −C− =⇒ have shortfall, need up-regulation

Aggregate flexibility of EVs can be modeled as a stochastic battery
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Intuition

� Flexibility captured by battery capacity [−C−(t),C+(t)]

− time-varying
− depends only on active task info
− easily computed causally from T
− ex: Bernoulli arrival of identical tasks

C− = C+ ≈ 0.5
∑

i∈A(t)

E i = C (t)

� Aggregate Flexibility C (t)

− C (t) = half energy needs of active tasks at time t
− keep cumulative deviation x in sleeve ±C (t)
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Minimum Energy Reserve Policy

� Suppose available generation is not exactly adequate

− shortfall → up-regulation rup(t)
− surplus → need down-regulation rdown(t)

� How much reserves are needed? How to schedule in real-time?

Theorem

Define the random process y(t) with y(0) = 0 and

dy =

{
v(t) if |y(t)| ≤ C

0 else

The minimum energy reserve policy to complete the tasks is

rup(t) = (y(t) + v(t)− C )+

rdown(t) = (−C − y(t)− v(t))+
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Illustration

r−

r+

C−

C+

x
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Illustration

r−
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C−

C+

x
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Dominguez-Garcia, Poolla, Varaiya CERTS Review 2013 42 of 45August 6, 2013 42 / 45



ex: Green Garage

� Car statistics

Average EV arrivals 50 per hour
Average time parked h hours
Average charge rate 4 kW
Nominal load n(t) ≈ 50× h × 4 kW

� Aggregate Flexibility

− Average energy needed at any time

ave num of cars

50h ×
charge rate

4 ×
ave stay

h = 200h2 kWh

− Cars behave like nominal + stochastic battery:
− Battery capacity ≈ ±100h2 kWh
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What happens with Rate Limits?

Theorem
Assume rate limits. Suppose g is adequate.
Causal scheduling policy may not exist.

� Must use forecasts of generation g(t) and loads T

� Model predictive control works well, but may be overkill

� Simulation studies reveal

− Reserve energy: all scheduling policies are comparable
− Reserve capacity: MPC is better
− In many metrics, EDF/LLF work very well for ≈ 100 EVs

A. Subramanian et al, [ACC 2012, CDC 2012]
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Looking Forward ...

� Computing battery models

− Deferrable appliance loads?
− Commercial buildings?
− Can we use data from AMIs directly to build battery models?

� Regulation resources: conventional generation, flex loads, storage

− Differentiated by reliability, duration, performance
− Different prices

� Generalized regulation procurement

− What resource mix should SO use?
− Network case?
− Connections to RLD?

� Incentivizing Participation

− Discounts? Lotteries?
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