Assessing Transmission Investments Under Uncertainty

CERTS
Reliability & Markets

Internal Program Review

Ithaca, Aug. 6-7, 2013

Benjamin F. Hobbs Francisco D. Munoz Saamrat Kasina Jonathan Ho

Outline

- 1. Introduction
- 2. Model Overview, Realistic Test-Case: WECC 240
- 3. Results
- 4. Bounding & Decomposition Approaches
- 5. MATPower/SuperOPF as Planning Subproblem
- 6. Conclusions

1.1 Introduction

Solar Resources (NREL)

Wind Resources (NREL)

U.S. Transmission System

Zone Scenario Generation and Transmission Cost (MISO 2010)

Optimal:

Combination of Local & Regional Generation

1.2 More Challenges

- Hyper uncertainty:
 - Fuel Costs
 - Demand Growth
 - Technology Costs

- Carbon Tax
- Demand Response
- PEV

- RPS
- Distributed Generation

- Unbundled Electricity Market
 - Trans & gen planning separated
 - Transmission takes longer to build
 - Price signals guide gen investment

We need <u>practical methods</u> that can handle:

- Large-scale networks
- Uncertainty
- Generators' response
- Kirchhoff's Laws

Outline

- 1. Introduction
- 2. Model Overview, Realistic Test-Case: WECC 240
- 3. Results
- 4. Bounding & Decomposition Approaches
- 5. MATPower/SuperOPF as Planning Subproblem
- 6. Conclusions

2.1 Multi-Stage StochasticTransmission Planning

Assumptions

- Aligned generation and transmission objectives
 - Nodal pricing + Perfect Competition
- Generation
 - No unit commitment constraints/costs
- Demand
 - No demand response
- Renewable targets met in most efficient way

Model Formulation

min
$$I^1 + \sum_s p_s (I_s^2 + O_s^2 + O_s^3)$$

Scenarios T=1T=3Operations 2 Investments 1

Max generation investments :
$$\sum_{t \in U} y_{b,k,s}^t \le Y_{b,k,s}^{\max}$$

Investments 2

Operations 3

Max transmission investments :
$$\sum x_{l,s}^t \le 1$$

Installed reserve margins:
$$\sum_{u \in U_t} \sum_{b \in B} (\sum_{k \in NI} y_{b,k,s}^u + \sum_{k \in I} ELCC_k y_{b,k,s}^u) \ge (1 + RM) \sum_{b \in B} D_{b,h^*,s}^t$$

KCLs:
$$\sum \sum f_{l,h,s}^t + \sum (\sum g_{b,k,h,s}^t + r_{b,h,s}^t) = D_{b,h,s}^s$$

$$\text{KVLs}: \begin{array}{l} f_{l,h,s}^t \! - \! \gamma_l \, (\theta_{b,h,s}^t \! - \! \theta_{p,h,s}^t) \! = \! 0 \\ \left| f_{l,h,s}^t \! - \! \gamma_l \, (\theta_{b,h,s}^t \! - \! \theta_{p,h,s}^t) \right| \! \leq \! M_l (1 \! - \! \sum x_{l,s}^t) \\ \end{array}$$

 $k \in K \ h \in H \ b \in B$

Thermal limits:
$$\left|f_{l,h,s}^t\right| \le F_l^{\max}$$

$$|f_{l,h,s}^t| \leq F_l^{\max} \sum x_{l,s}^t$$

$$\text{Intermittent generation}: \quad g_{b,k,s}^t \leq W_{b,k,s}^{l \in L_C} \sum y_{b,k,s}^s$$

Non-intermittent generation:
$$g_{b,k,h,s}^t \le \sum y_{b,k,s}^s$$

Renewable Portfolio Standards :
$$\sum \sum \sum g_{b,k,h,s}^t + nonc^t \ge RPS_s^t \sum \sum \sum g_{b,k,h,s}^t$$

Emissions Cap:
$$\sum \sum \sum g_{b,k,h,s}^t e_k \leq E CAP_s^t$$

 $k \in K h \in H b \in B$

2.3 WECC 240-bus Test Case

WECC 240-bus system:

(Price & Goodin, 2011)

140 Generators (200 GW)

448 Transmission elements

21 Demand regions

28 Flowgates

Renewables data (Time series, GIS)

(NREL, WREZ, RETI)

54 Wind profiles

29 Solar profiles

31 Renewable Hubs (WREZ)

Candidate Transmission Lines

Max number of circuits per corridor:

2 for Backbones

4 for Interconnections to Renewable Hubs

2.4 Scenarios

Focus on environmental policy and fuel prices

Differentiated State RPS

- State RPS
- >75% from in-state resources
- Average fossil fuel prices

33% WECC-wide RPS

- 33% WECC-wide RPS
- Efficient REC markets
- High fossil fuel prices

Carbon Cap & Trade

- 17% below 2005 levels by 2020
- 45% below 2005 levels by 2030
- Low fossil fuel prices

Experiments

- Scenario Planning (Deterministic)
- Stochastic Approach
- Heuristics:
 - 1. Heuristic I: Build lines needed in all the scenarios
 - Heuristic II: Build lines needed in "most" scenarios (at least 2)

3. Heuristic III: Build all lines

"Least-regrets" or "Multi-Value Projects"

"Congestion-free"

Outline

- 1. Introduction
- 2. Model Overview, Realistic Test-Case: WECC 240
- 3. Results
- 4. Bounding & Decomposition Approaches
- 5. MATPower/SuperOPF as Planning Subproblem
- 6. Conclusions

3.1 Results

First-Stage Transmission Investments: Backbones

Approach	B19	B37	B56	B68	B72	B73	B74	B92	B95	B125	B133	B136	B137	B143	B151	B157	B168	B169	B201	B202	B218	B222	B237	B238
D-Carbon				1					1	1	1		1	2								2	1	2
D-33% WECC		1			1	1	2		1								1	1	1		1	1	2	
D-State RPS	2	1	1					2		2		1								1		1		2
																	F	lexi	ble p	olan	s are	9		
																	C	uho	ntin	nal i	n rei	trosi	nect	П

3.2 Results

First Stage Generation Investments: Deterministic vs Stochastic Solutions

3.3 Results: Carbon Cap Case

- Gen added near demand
- Low penetration of renewables
- Carbon cap only within US

3.4 Results: State RPS Case

- High renewable penetration
 - Mainly California
- Why? California has highest state RPS

3.5 Results: WECC 33% Case

- High renewable penetration
- High quality distant resources accessed
 - Favors population centers

3.6 Results: Stocahstic Solution

- Hi renewables
 - Generation closer to California
- <u>Unique</u>
 <u>stochastic lines</u>

3.7 Results Summary

Economic Performance of Investment Strategies

Approach	First-Stage	E(System Costs) across				
Арргоасп	Backbones	Interconnections	Total	scenarios [\$B]		
D-Carbon	4.0	0.1	4.1	728.2		
D-33% WECC	6.1	9.3	15.4	653.6		
D-State RPS	7.2	4.1	11.3	667.0		

- Expected Value of Perfect Information (EVPI) = \$45.4 Billion
- Value of Stochastic Solution (VSS) = \$46.7 Billion
- WECC 10-Year Regional Transmission Plan:
 - Estimates of \$20 Billion in transmission investments to meet demand forecasts and renewable targets by 2020.

Outline

- 1. Introduction
- 2. Model Overview, Realistic Test-Case: WECC 240
- 3. Results
- 4. Bounding & Decomposition Approaches
- 5. MATPower/SuperOPF as Planning Subproblem
- 6. Conclusions

4.1 Ongoing Research

Challenge: Accurate representation of intermittent resources

Benders Decomposition: Theoretical convergence vs actual performance

4.2 Stylized Planning Model

Objective: MIN present worth of capital + operating costs

Operations problem formulated as a probabilistic production cost model (LP):

$$f\left(x,\Omega\right) = \min_{y_h} \sum_{h \in \Omega} p_h c^T y_h$$

$$Wy_h = r_h - T_h x \quad \forall h \in \Omega$$
 Block-diagonal constraints, separable
$$y_h \geq 0 \qquad \forall h \in \Omega$$
 Time-dependent parameters are RHS

4.3 Tight Lower Bound

Lower Bound:

- Time-dependent parameters are RHS $Wy_h = r_h T_h x$
- LP: Optimal cost convex on RHS

Algorithm:

- 1) Create k partitions of load/variable resources space Ω (e.g. K-Means)
- 2) Add deterministic operating problem for each to Benders Master Problem: Augmented Benders Decomposition
- 3) Solve in usual Benders fashion

4.4 Acceleration of Convergence (17 Bus Problem)

Outline

- 1. Introduction
- 2. Model Overview, Realistic Test-Case: WECC 240
- 3. Results
- 4. Bounding & Decomposition Approaches
- 5. MATPower/SuperOPF as Planning Subproblem
- 6. Conclusions

5.1 Contingency-basedTransmission planning

The research problem:

- Can the SuperOPF framework be adapted for optimal transmission planning?
- Approach
 - Benders Decomposition

5.2 MATPOWER 30-bus system

5.3 Contingencies (Lamadrid et al.,2008)

	Contingency	Probability			
0	Base Case	95.0%			
1	Line 1: 1-2 (between gens 1 and 2)	0.2%			
2	Line 2: 1-3 (from gen 1)	0.2%			
3	Line 3: 2-4 (from gen 2)	0.2%			
4	Line 5: 2-5 (from gen 2)	0.2%			
5	Line 6: 2-6 (from gen 2)	0.2%			
6	Line 36: 27-28	0.2%			
7	Line 15: 4-12	0.2%			
8	Line 12: 6-10	0.2%			
9	Line 14: 9-10	0.2%			
10	Gen 1	0.2%			
11	Gen 2	0.2%			
12	Gen 3	0.2%			
13	Gen 4	0.2%			
14	Gen 5	0.2%			
15	Gen 6	0.2%			
16	10% increase in load	1.0%			
17	10% decrease in load	1.0%			

5.4 MATPOWER 30-bus test case results

5.5 MATPOWER 30-bus system results

5.6 Contingency-basedTransmission planning

/

Compatible with MATPOWER OPF results

Demonstrate calculation of Benders cuts

Demonstrate integration of SuperOPF framework (DC) in

Benders: 30 bus example

Next?

- DCOPF with losses, ACOPF
- Coordination with E.I. generation and/or transmission expansion (Bill Schulze, Dan Tvlavsky)

Outline

- 1. Introduction
- 2. Model Overview, Realistic Test-Case: WECC 240
- 3. Results
- 4. Bounding & Decomposition Approaches
- 5. MATPower/SuperOPF as Planning Subproblem
- 6. Conclusions

6. Conclusions

- Scenario Planning is a weak tool for decisions under uncertainty
 Deterministic plans don't account for flexibility
- Heuristic planning rules can perform worse than myopic deterministic plans
- "Value of Stochastic Solution": up to ~3 times the cost of transmission.
- Bounding & decomposition approaches are practical for improving granularity in operations

MATPower/SuperOPF promising for operations subproblem

Questions?

Francisco Munoz:

francisco.munoz@jhu.edu

Benjamin Hobbs:

bhobbs@jhu.edu

References

- AESO, "AESO Long-term Transmission Plan," Alberta Electric System Operator, June 2012. http://www.aeso.ca
- M. Awad, K.E. Casey, A.S. Geevarghese, J.C. Miller, A.F. Rahimi, A.Y. Sheffrin, M. Zhang, E. Toolson, G. Drayton, B.F. Hobbs, and F.A. Wolak, "Economic Assessment of Transmission Upgrades: Application of the California ISO Approach", Ch. 7, in X.-P. Zhang, Restructured Electric Power Systems: Analysis of Electricity Markets with Equilibrium Models, Power Engineering Series, J. Wiley & Sons/IEEE Press, July 2010, 241-270.
- Eastern Interconnection States' Planning Council, Whitepaper: **Co-Optimization of Transmission and other Supply Resources**, Solicitation Number: NARUC-2012-RFP010-DE0316, 2012, www.naruc.org/RFP/NARUC2012-RFP010-DE0316 EISPC RFP.pdf
- (2013) **FERC Order 1000 Transmission Planning and Cost Allocation**. [Online]. Available: http://www.ferc.gov/industries/electric/indus-act/trans-plan.asp
- A.H. van der Weijde and B.F. Hobbs, "The Economics of Planning Electricity Transmission to Accommodate Renewables: Using Two-Stage Optimisation to Evaluate Flexibility and the Cost of Disregarding Uncertainty, Energy Economics, in press, U. Cambridge Economics working paper.
- B. F. Hobbs and Y. Ji, "Stochastic Programming-Based Bounding of Expected Production Costs for Multiarea Electric Power Systems," Operations Research, 97 (6), 836-848, 1999.
- CAISO, "2011-2012 Transmission Plan," California ISO, March 2012. http://www.caiso.com
- F.D. Munoz, B.F. Hobbs, and S. Kasina, "Efficient Proactive Transmission Planning to Accommodate Renewables," IEEE Power Engineering Society General Meeting, July 2012.
- J.P. Pfeifenberger and D. Hou, "Transmission's True Value: Adding up the Benefits of Infrastructure Investments," Public Utilities Fortnightly, February 2012, 44-50.
- J.E. Price and J. Goodin, "Reduced Network Modeling of WECC as a Market Design Prototype, IEEE Power Engineering Society General Meeting, July 2011.
- MISO, "Regional Generation Outlet Study," Midwest ISO, November 2010. http://www.midwestiso.org
- R. P. O'Neill, E. A. Krall, K. W. Hedman, and S. S. Oren, "A model and approach for optimal power systems planning and investment," Mathematical Programming, 2012.

Our Method

Algorithm:

Apply Benders decomposition with an auxiliary lower bound in master problem.

$$\min_{x,\alpha} e^{T} x + \alpha$$

$$Ax = b$$

$$\alpha \ge Benders _cuts(x, \Omega)$$

$$x \ge 0$$

$$\alpha \ge f(x, \Psi^{k})$$

Polyhedral lower bound on $f(x,\Omega)$ for any x

