Measurement Based Stability Assessment

DOE/OE Transmission Reliability R&D Internal Program Review Meeting June 27-28, 2013 Washington DC

> Dan Trudnowski, Montana Tech John Pierre, U of Wyoming

Project Overview

- Objective: Develop, test, and refine algorithms to automatically estimate and quantify oscillations from PMUs in real time.
- Application
 - Real-Time Situational Awareness based upon actual system observations
- Time line:
 - April 2006 thru April 2015
- Participants:
 - Dan Trudnowski, Montana Tech
 - John Pierre, University of Wyoming
 - Louis Scharf, Colorado State University (Retired)
 - Lots of graduate students
- Collaborators:
 - Ning Zhou, PNNL (funded independently)
 - Bonneville Power Administration
- Advisors
 - John Hauer, PNNL (Retired)
 - Bill Mittelstadt, BPA (Retired)

Dynamic Response Types

Algorithm Classes

- Oscillation Detector (OD): Immediately tells one that an oscillation is occurring with minimal quantification.
 - Very fast and robust
 - Distinguishes between forced oscillation and transient
 - If it is a FO, tells location of FO.
 - Operations and Engineering tool.
- Mode Meter (MM): Estimates a mode's frequency, damping, and shape.
 - Operates automatically
 - Ambient conditions (minutes)
 - Transient conditions (seconds)
 - Operations and Engineering tool
- Spectral Estimator (SE): Estimate the spectra of a signal.
 - Requires minutes of data for averaged spectra
 - Requires seconds of data for single window fft
 - Very robust
 - Operations and Engineering (Lots of data management and visualization)
- Ringdown Estimator (RE): Estimates a mode's frequency, damping, and shape.
 - Only works on transient data, requires seconds of data.
 - Not robust. Easy to fool (e.g., multiple switchings)
 - Engineering tool

Research Approach

Tasks:

- 1. Signal & systems research
- 2. Conduct and analyze field tests
- 3. Develop and test appropriate automated code

Accomplishments to Date Signal & Systems Research

Red = Current or past year

Mode-meter algorithms

- YW = Yule Walker, YWS = Yule Walker Spectral, N4SID = Sub-space
 ID, R3LS = Regularized Robust Recursive Least Squares
- Mode energy calculations for automated application
- Tested Frequency Domain methods
- R3ML = Regularized Robust Recursive Maximum Likelihood, MTF = Multi-Channel Transfer Func. – simultaneous mode and shape, Simultaneous mode and forced oscillation methods

Performance and Validation Indices

- Confidence bound estimation (Bootstrapping) for YW, YWS, and N4SID.
- Direct Confidence bounds from RML
- Whiteness testing

Accomplishments to Date Signal & Systems Research

Red = Current or past year

- Ringdown Estimators
 - Compared BPA/PNNL Prony analysis with Matlab-based Prony
 - Algorithms to automatically detect a ringdown (Zhou)
- Mode Shape
 - Fundamental calculations for extracting mode-shape information.
 - 3 algorithms for estimating the mode-shapes.
- Forced Oscillations
 - Fundamental characteristics of forced oscillations.
 - Simultaneous mode and forced oscillation methods.
 - Effect of forced oscillations on mode-shape estimation algorithms
- Oscillation Detection
 - RMS Energy filtering
 - Self Coherency
- Spectral Estimation
 - Magnitude and Phase Response Estimates Standard Deviation
 - Fast recursive methods for estimating spectrum

Accomplishments to Date Application Development & WECC Tests

Red = Current or past year

- Expert System for automated application of mode meter (Patent pending).
- Supported EPG's code implementation
- Installed prototype mode-meter and Ringdown estimator at BPA for 2010-13 operating season
- Modal Analysis Software (MAS).
- WECC System Tests
 - Designed methodology to construct multi-sine optimized PDCI probing signals
 - Supported and analyzed Aug. 2006, Aug. 2008 tests, 2009 season tests (14 tests), 2011 season tests (16 tests). 2012 season tests (26 tests)
 - Currently conducting 2013 season tests

Forced Oscillations (FOs)

- Many causes, e.g.:
 - Generator rogue controller in limit cycle
 - Pulsing loads
 - NOT A SYSTEM INSTABILITY
- FOs very common
- Can be very severe: November 30, 2005
- Fundamental Goals: Develop signal processing algorithms that
 - Identify forced oscillations and distinguish them from system modes.
 - Identify the root location and cause of the forced oscillation.

FO Properties

- Research Questions
 - What are the fundamental causes?
 - Generator controls and loads.
 - Real power vs reactive power.
 - · Pole slipping.
 - How do FOs propagate thru the system?
 - Voltage vs current.
 - Speed vs power.
 - What are the impacts of FOs on MM and Mode Shape algorithms?
- Study approach
 - Fundamental systems analysis.
 - miniWECC simulation and analysis.
- FOs are typically harmonic.

FO Properties

Propagation of real-power non-harmonic FOs

- If FO is not near a system mode, the real-power and current oscillations are largest at the FO power-plant.
- If FO is near a system mode, power-plant measurements DO NOT provide info on FO location.
 - FO tends to follow mode shape.
 - No pattern for voltage vs. current at the power plant.
 - Intra-plant measurements can reveal the location of the FO.
- What's next? Harmonic FOs.

FO Impact on Mode-Shape Estimation

- Theoretical analysis and simulations have shown that FOs have minimal impact on spectral-based algorithms.
- What's next? TF based mode-shape estimation.

Simultaneous Mode and FO Estimation

Example Simulation

Mode Meter with Error Bounds RML

- 500 Monte Carlo Trials
- Probing from 40 to 70 minutes
- True values in RED
- Mean and region of one standard deviation given
- Mean lines up with true
- Standard deviation is low

Ambient Data Results MCTF vs. MEYW

RD&D Stage

Components ranging from Theoretical Study to Pre-commercial.

- Theoretical Study:
 - Signal & systems research.
 - Forced oscillations research.
- Field Testing:
 - WECC system tests.
- Pre-commercial
 - MAS Software Production-grade software engine for modal analysis in operations and control environment.
 - YW, R3LS, Mode-Meter Expert System
 - Auto-spectrum Estimation
 - Oscillation Detection via RMS Energy
 - Becoming operational at
 - BPA Custom EMS software design.
 - WECC Integrated into Alstom Grid application
 - CalSO Integrated into RTDMS

FY13/14 Plans

- Continue fundamental signal & systems research
 - Continue mode-meter and mode-shape research
 - Improved accuracy
 - Impacts of forced oscillations
 - Performance indices (error bounds)
 - Fundamental nature of forced oscillations
 - Continue developing oscillation detection methods
 - Automated with little tuning
 - Distinguish between transients and forced oscillations
 - Identify root causes
- Continue to support WECC probing tests
- Integrate proven approaches into MAS

Testimonials

- ~45 publications in peer-reviewed journals and proceedings.
- Two patents pending.
- Helped organize/conduct IEEE Task Force (special publication).
- MAS production-grade software engine.
- MAS being used at WECC, BPA, and CalSO control centers

Questions?