Opportunities, Challenges, and Solutions to Enable a Clean Energy Future:

The Role of Nuclear Energy

Dr. Mark Peters Director, Idaho National Laboratory

Idaho National Laboratory

www.inl.gov

June 14, 2016

Idaho National Laboratory

The Urgent Need for Clean and Reliable Energy Provides Opportunities for Nuclear Energy

- National and global demand for nuclear energy is increasing and U.S. global leadership is decreasing
- There is a <u>sense of urgency</u> with respect to the development and deployment of advanced nuclear reactor technologies
- There is considerable private sector investment emerging in advanced nuclear reactor technologies

A progressive private-public RDD&D execution model must aim at achieving all three strategic objectives simultaneously.

There are Challenges that Need to be Overcome to Enable Nuclear Energy Future and Increase Our International Nuclear Energy Leadership

Policy Enablers for Nuclear Energy Future and Increasing International Nuclear Energy Leadership

ECONOMICS

- Production tax credits
- State-level clean energy standards
- Financial support and power purchase agreements
- Loan guarantees
- Price on carbon

SAFETY

- 123 agreements
- Technology export
- NRC as "gold standard"
- Regulatory process update

PUBLIC ACCEPTANCE Safe and Affordable

NON-PROLIFERATION & SECURITY

- 123 agreements
- Technology export
- NRC as "gold standard"
- Assured fuel supply & take back regime

WASTE MANAGEMENT

Long-term storage

- Consent-based siting of interim storage facilities and geologic repository
- Future fuel cycles
- Nuclear waste policy update

RD&D Enablers Support Policy

ECONOMICS

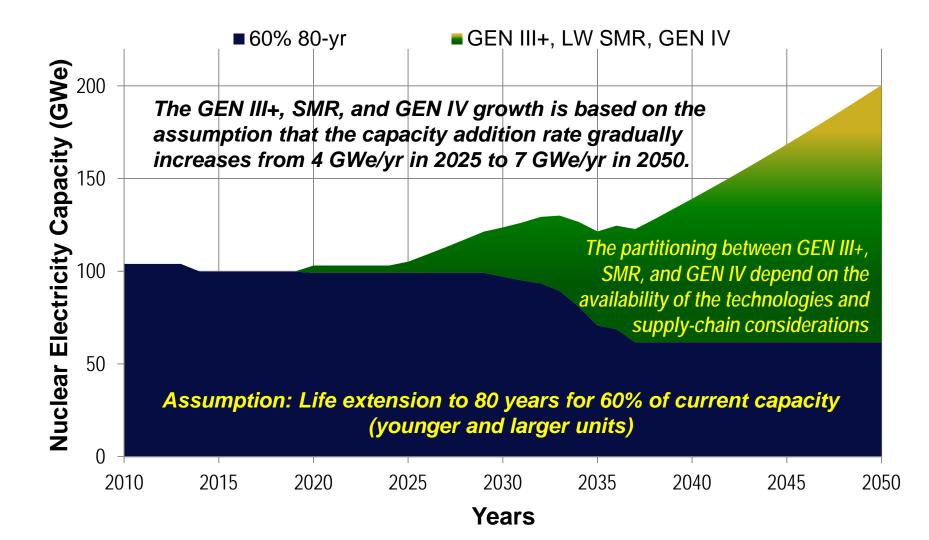
- Advanced manufacturing
- Hybrid energy applications
- Advanced energy conversion systems
- Reduced licensing and construction times

SAFETY

- Designs with improved inherent safety
- Advanced instrumentation & control systems
- Components with enhanced severe accident resistance (e.g., accident tolerant fuels)
 - Enhanced severe accident management

PUBLIC ACCEPTANCE Safe and Affordable

NON-PROLIFERATION & SECURITY


- Monitoring & verification technologies
- Safeguards by design
- Advanced cyber and physical security technologies

WASTE MANAGEMENT

- Advanced monitoring technologies
- Spent fuel integrity
- Disposal alternatives
- Safe, secure, and affordable recycling technologies
- Robust waste forms

There is a Need for Acceleration of Deployment

Requires Acceleration of Innovation

Removing barriers to a cleaner, safer nuclear energy source

We Are Developing a New Framework For Faster and More **Cost-Effective Innovation Cycle for Nuclear Energy**

Sequential Progression For Innovation


For complex technologies such as nuclear energy, the sequential model becomes less effective when large amounts of funding are required and the technology maturation cycle is long.

GAIN

Integrated Approach for Innovation to Achieve All 3 Strategic Objectives

DOE-VENDORS-UTILITIES

Private-Public Partnership Model Optimized strategy for development, demonstration, and deployment of advanced technologies.

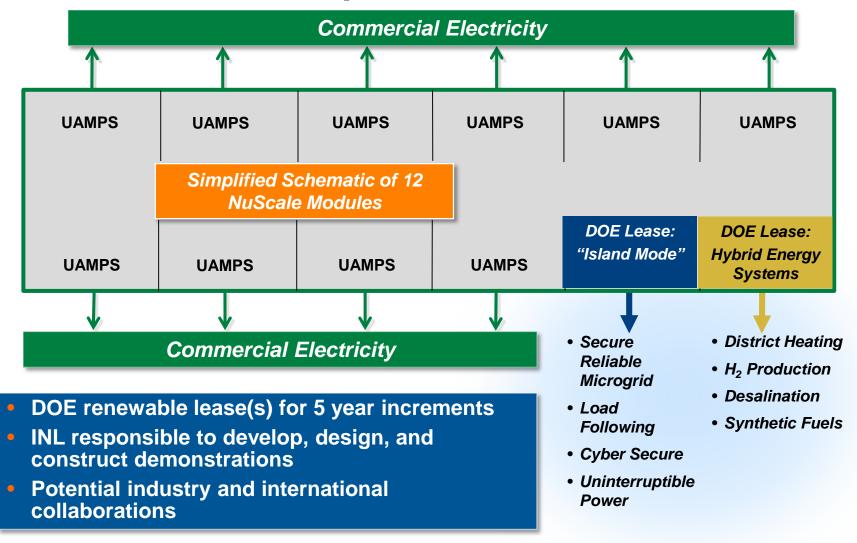
Implementing GAIN

In parallel with creating the private-public partnership and funding approach, engage industry on technology needs and focus advanced reactor R&D on common technology needs, innovative designs, and reducing cost of advanced nuclear energy systems.

GAIN Integrated Approach for Innovation to Achieve All 3 Strategic Objectives

DOE-VENDORS-UTILITIES

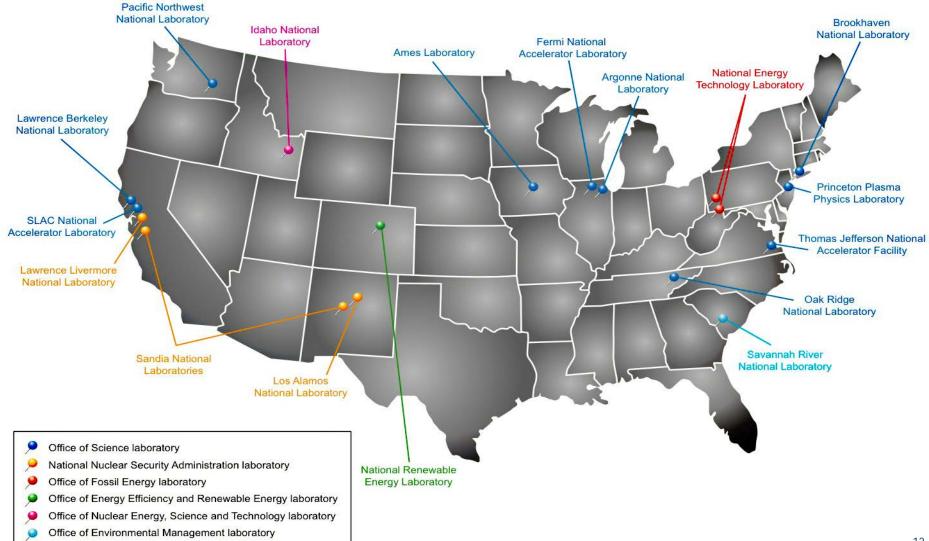
Private-Public Partnership Model Optimized strategy for development, demonstration, and deployment of advanced technologies.



R&D Test Bed and Demonstration Platform are Critical for Rapid Development and Commercialization of Advanced Nuclear Reactor Technologies

1	2	3	4	5	6	7	8	9	
	Proof-of-Concept		Proof-of-Performance			Proof-of-Operations			
	 R&D Test Bed to Address Technical Feasibility Knowledge and Validation Center Validated predictive modeling and simulation capabilities Experimental Capabilities 					 Demonstration Platform to Address Economic/Operational Feasibility Site Licensing Support Financial Support 			
	TerraPower					-A	X ZZ		
	✓ Major missing eler reactor.			ım test					

Joint Use Modular Plant (JUMP) Concept for NuScale Plant - Proposed



INL's Nuclear Science & Technology Capabilities and Programs are Key Enablers

National Laboratory Partnerships Are Key

Idaho National Laboratory